Loading...
hidden

Mobile-Version anzeigen

Meta-Navigation

Startseite – Hochschule Luzern

Sprachwahl und wichtige Links

  • Zum Inhalt springen
  • Kontakt
  • Login
  • De
  • En
Suche starten

Hauptnavigation

Departementsnavigation

  • Technik & Architektur
  • Wirtschaft
  • Informatik
  • Soziale Arbeit
  • Design Film Kunst
  • Musik
  • Gesundheit

Unternavigation

  • Studium
  • Weiterbildung
  • Forschung
  • International
  • Campus
  • Über uns
  • News & Stories

Unternavigation

Breadcrumbs-Navigation

  1. Forschung an der Hochschule Luzern Forschung an der Hochschule Luzern
  2. Alle Projekte der Hochschule Luzern Alle Projekte der Hochschule Luzern
  3. User centric building energy management User centric building energy management

User centric building energy management

Building control mechanisms, which are primarily designed for energy efficiency optimization, are often not well accepted by the residents.

Kurzinformation

Departement:

Technik & Architektur

Status:

Abgeschlossen

Zeitraum:

01.01.2017 - 31.12.2020

In der Übersicht

In the SCCER “Future Energy Efficient Buildings & Districts” (FEEBD) at the iHomeLab, methods of machine learning are being developed in order to understand user behavior and thus increase the acceptance of building control.

HSLU iHomeLab is leading two tasks within SCCER FEEB&D Phase II. In the first Task, methods are explored for the recognition of user activities in order to enable user-centric control strategies. First, insight is gathered about the interaction between the building control system and its occupants. Then, the most suitable solution (single- or multisensory) is determined for the reliable recognition of predetermined activities and behaviors. Finally, concepts are developed based on machine learning and sensor fusion in order to recognize the selected activities reliably. It is expected that up to five TWh/a could potentially be saved in Switzerland alone through user-centric building control systems.

The second task takes place in collaboration with HSLU IGE. It is explored how data-driven building energy models can be automatically created and consecutively used for building characterization (“fingerprint”) and energy usage prediction. Data from various buildings of different types, both residential and functional, will thereby be used as input for the modelling task. The goal is to define energy fingerprints (i.e. typical behavior) of buildings automatically, and deviations from them. This in turn allows one to identify energy optimization opportunities and to predict electrical energy consumption of buildings that is driven by user behavior. The self-generation of building models will reduce the initial engineering cost for predictive control systems and therefore help to accelerate their market penetration.

hidden

Fakten

Projektart

Forschung

Beteiligte interne Organisationen
  • iHomeLab
  • ALT - Technik & Architektur
Finanzierung
  • KTI-HSLU als Nicht-Hauptgesuchsteller/in
hidden

Beteiligte Personen intern

Projektleiter/in
  • Sabine Sulzer
Co-Projektleitung
  • Olivier Steiger
Projektmitarbeiter/in
  • Elio Amato
  • Martin Camenzind
  • Martin Friedli
  • Patrick Huber Mittler
  • Seraina Kessler
  • Marco Kunz
  • Richard Lüchinger
  • Melissa Obermeyer
  • Andrew Paice
  • Andreas Rumsch
  • Olivier Steiger

Publikationen

  • Artikel, Rezension; peer reviewed (3)

    • Huber Mittler, Patrick; Friedli, Martin; Paice, Andrew; Rumsch, Andreas & Ott, Melvin (2020). Residential Power Traces for Five Houses: The iHomeLab RAPT Dataset. mdpi data, 5(1), 1-17. doi: 10.3390/data5010017

    • Voinov, Philippe; Huber Mittler, Patrick; Calatroni, Alberto; Rumsch, Andreas & Paice, Andrew (2020). Effect of Sampling Rate on Photovoltaic Self-Consumption in Load Shifting Simulations. Energies, 2020(20), 5393. doi: 10.3390/en13205393

    • Huber Mittler, Patrick; Gerber, Mario; Rumsch, Andreas & Paice, Andrew (2018). Prediction of domestic appliances usage based on electrical consumption. Springer Open, 2018(1), 265-271. doi: 10.1186/s42162-018-0035-1

  • Präsentation (Tagungsbeitrag/Referat/Vortrag) (1)

    • Camenzind, Martin; Huber, Patrick; Rumsch, Andreas & Paice, Andrew (29.10.2020). Design of an Ultra-Low Power Sensor Platform for the Detection of Activities of Daily Living in Residential and Commercial Environments. Energy Informatics 2020, Sierre, Switzerland.

Kurzinformation

Departement:

Technik & Architektur

Status:

Abgeschlossen

Zeitraum:

01.01.2017 - 31.12.2020

Projektleitung

Prof. Dr. Sabine Sulzer

Vizedirektorin

+41 41 349 35 97

E-Mail anzeigen

Co-Projektleitung

Prof. Dr. Olivier Steiger

Professor

+41 41 349 34 26

E-Mail anzeigen

Footer

FH Zentralschweiz

Links zu den Social-Media-Kanälen

  •  Instagram
  •  LinkedIn
  •  TikTok
  •  Facebook
  •  YouTube
  •  Flickr

Kontakt

Logo Hochschule Luzern

Hochschule Luzern


Werftestrasse 4
6002 Luzern

+41 41 228 42 42

info@hslu.ch

Direkteinstieg

  • Studieninteressierte Bachelor
  • Studieninteressierte Master
  • Weiterbildungsinteressierte
  • Für Studierende
  • Für Mitarbeitende

Quicklink

  • Personensuche
  • Standorte
  • Aktuell
  • Bibliotheken
  • Agenda
  • Medien
  • Jobs, Karriere und Berufsbildung
  • Home
  • Räume mieten

Statische Links

  • Newsletter abonnieren
  • Datenschutzerklärung
  • Impressum
  • Institutionell akkreditiert nach HFKG 2019–2026
Logo Swissuniversities

QrCode

QrCode