
The data exchange between smart glasses and 
healthcare information systems using the HL7 

FHIR standard 
Jacek Ruminski Member, IEEE, Adam Bujnowski, 

Tomasz Kocejko 

Gdansk University of Technology 
Gdansk, Poland 

jacek.ruminski@pg.gda.pl 

Aliaksei Andrushevich, Martin Biallas, Rolf Kistler 

iHomeLab, 
Lucerne University of Applied Sciences and Arts, 

Lucerne, Switzerland 
aliaksei.andrushevich@hslu.ch

 
Abstract—In this study we evaluated system architecture for 

the use of smart glasses as a viewer of information, as a source of 
medical data (vital sign measurements: temperature, pulse rate, 
and respiration rate), and as a filter of healthcare information. 
All activities were based on patient/device identification 
procedures using graphical markers or features based on visual 
appearance. The architecture and particular use cases were 
implemented and verified using smart glasses prototypes 
developed under the eGlasses project and using a reference 
Health Level 7 Fast Healthcare Interoperability Resources  (HL7 
FHIR) server. The results show that information about the 
identified patient can be quickly retrieved from FHIR servers 
and annotated using voice recognition services. Smart glasses can 
be used in the measurement of vital signs of the observed patient, 
providing values of body temperature, pulse rate, and respiration 
rate by means of non-contact measurements. Such measurements 
are sufficiently reliable for medical screening and for fast data 
exchange using HL7 FHIR actions. 

Keywords—smart glasses; face recognition; object recognition; 
human-computer interaction 

I.  INTRODUCTION 
In many countries physicians, health care providers and 

other health care professionals are using smartphones and 
tablets in their work [1]. According to the mhealthshare 
reports [2] the global revenue projection for m-health 
applications in 2017 is about $27 billion. In the USA the 
professional usage of mobile devices is very high and 
therefore there are special guidelines considering the use of 
mobile devices and health information privacy and security 
[3], especially related to the HIPAA standard [4]. 

Smart glasses are mobile, wearable devices that can 
provide valuable information to the user extending human 
senses and capabilities of information processing. Typically, 
the near-to-eye display could be used to present graphical 
information. Such method of information presentation is more 
confidential that those used for tablets or smartphones. Smart 
glasses can be equipped with different sensors, 
communication interfaces, etc. For example, a visible light 
camera is typically used for image/video recording. In recent 
years, many devices have been proposed, including Google 
Glass, Epson Moverio BT-200, Recon Jet, Lumus DK-40, etc. 
[5]. Many demonstrations of potential roles of smart glasses in 

healthcare were presented. For example, Evena Medical 
introduced a modification of smart glasses to identify veins in 
a patient's body and to provide the assistance for a nurse e.g. at 
the time of sample collection or for injections. Short wave IR 
illumination is used to visualize the internal structure of the 
skin [6]. Beth Israel has integrated Google Glass locating QR 
code on the doorway to each emergency patient’s room. Using 
dedicated software Google Glass can retrieve patient ID from 
the QR code and can instantly call up a patient’s electronic 
medical record [7]. In [8] Philips “simulated the first proof of 
concept for the seamless transfer of patient vital signs into 
Google Glass”.  

In this paper we will focus on the possible role that smart 
glasses can play in interaction with health information systems 
(e.g. with a Hospital Information System - HIS). We limited 
our research to three types of roles of smart glasses:  

• smart glasses as a viewer of information (e.g. request 
information from a healthcare information system),  

• smart glasses as a source of information (e.g. vital 
sign measurements with smart glasses sensors),  

• and smart glasses as a filter of healthcare information 
(e.g. select information from a medical device and 
add interpretations).  

In the presented study prototypes of smart glasses 
developed under the eGlasses project were used 
(www.eglasses.eu).  

Additionally, we consider the application of the automatic 
identification of patients and/or devices (e.g. connected to a 
patient) using either the recognition of graphical markers or 
the recognition of features based on visual appearance of a 
person or a device. Using the identifier of the patient or the 
device, smart glasses can retrieve or add information to the 
healthcare information system. In this research we analyze the 
use of HL7 Fast Healthcare Interoperability Resources (FHIR) 
Specification [9] for medical data exchange. The HL7 FHIR 
has been recognized as a very promising draft standard for 
medical data exchange also for mobile applications [10]. The 
use of RESTful services in mobile processing is especially 
interesting for Mobile Health Document Sharing [11], 
Management of Patient IDs, etc. 

This work has been partially supported by NCBiR, FWF, SNSF, ANR 
and FNR in the framework of the ERA-NET CHIST-ERA II, project 
eGLASSES – The interactive eyeglasses for mobile, perceptual computing and 
by Statutory Funds of Electronics, Telecommunications and Informatics 
Faculty, Gdansk University of Technology. 
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The proposed architecture was implemented and tested 
using prototypes of eGlasses smart glasses platform and using 
the HAPI-FHIR server hosted by University Health Network 
(http://fhirtest.uhn.ca). This server provides a nearly complete 
implementation of the FHIR Specification. 

The contributions of this paper are as follows: 

1. we proposed the design of the system architecture 
using smart glasses as a node for exchange of 
medical data using FHIR standard 

2. we proposed the use of smart glasses for the 
estimation of vital signs of the observed patient and 
describing them using the FHIR notation 

3. we proposed a method for interaction between smart 
glasses and a medical device for simple annotation of 
medical data represented in the FHIR format 

The rest of the paper is structured as follows: Section II 
presents the proposed system architecture and describes the 
methodology including experiments. Implementation of the 
proposed methods is shown in Section III. Results are 
described in Section IV. Section V presents a discussion of 
results and concludes the paper. 

II. METHODS  
We propose the simple system architecture for interaction 

of smart glasses with healthcare information systems based on 
the identification of patients or devices. In such architecture 
smart glasses can show data from information systems or from 
medical devices, can provide information about a patient to 
information systems, or can filter information from available 
sources. 

A. The architecture of the system 
The system architecture for the proposed interaction 

methods is based on the multi-tier model (Fig. 1a).  

a)  

 
b)                c) 

Fig. 1. Interaction of smart glasses with the HIS: a) general architecture of 
the system, b) retrieval of information about the identified patient, c) vital 
signs measurements with the updating of the HIS data.  

In the first scenario smart glasses are located in the middle 
between a patient and a healthcare information system (e.g. 
Hospital Information System, HIS). In this scenario smart 
glasses are used to identify a patient (i.e. to obtain a patient’s 
identifier, PID) and to manage his or her medical data. We 
assume that the identification process can use either the 
recognition of graphical markers (e.g. QR-codes, bar codes 
printed on the hospital wrist-strap) or face recognition. When 
the patient is positively identified smart glasses can:  provide 
information from the connected HIS (Fig. 1b) or can be a 
source of information for the HIS (Fig. 1c). In the second 
scenario smart glasses are a middle-tier between a medical 
device, which is connected to a patient, and the connected 
HIS. It is assumed that the identified device is connected to 
the identified patient and information about this association is 
stored in a server (e.g. in the HIS). In this scenario smart 
glasses provide means for the identification of devices (using 
graphical markers or features based on visual appearance). It 
is additionally assumed that when the device is positively 
identified then it is possible to download information about the 
device. Using this information smart glasses can connect to 
the device and execute available actions. For example, it can 
be assumed that a medical device securely provides 
information about actual and previous measurements 
(observations). In both scenarios different security 
mechanisms should be introduced, but we do not analyze them 
in this paper.  We further propose to use the HL7 FHIR 
Specification for data representation and data exchange 
between nodes of such multi-tier system. In the analyzed 
scenarios FHIR RESTful resources are used describing a 
Patient, a Device, or an Observation. When the identifier of a 
patient or a device is recognized it can be used to read 
information from the HIS/FHIR server using the HTTP GET 
method. Smart glasses can parse the retrieved JSON or XML 
message and present chosen information on the near-to-eye 
display. If smart glasses are used as a source of medical data, 
such data can be presented on the near-to-eye display (Fig. 2b) 
and can be additionally exported as the Observation resource 
to the FHIR-compatible HIS. Smart glasses can also filter any 
(Patient, Device, Observation) resource to update it with new 
properties (e.g. adding the interpretation information). 

 
Fig. 2. a) Interaction of smart glasses with a HIS using data from the 
identified medical device connected to the patient (simulated hospital 
environment). b) An example of possible data presentation on the near-to-eye 
display of the smart glasses 

B. Identification of subjects and objects 
Using smart glasses different methods of the identification 

of patients or devices can be proposed using markers or 
patient-based features (e.g. face features). We previously 
performed experiments related to recognition efficiency of 
graphical markers using Android-based smart glasses (e.g. 
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Google Glass, eGlasses) [12][13][14]. Results of those studies 
were used in this research. To improve the code detection we 
additionally use the camera zoom (2x/4x) to crop the marker 
image for better recognition effects. Additionally, the 
identification of subjects (and objects) based on visual 
appearance was used as described in [15][16][17]. Regardless 
of the method of the recognition of an entity the proposed 
identification method assumes two phases. In the first phase 
(described above) the identifier of the patient or the device is 
obtained using the recognition of either graphical markers or 
features based on visual appearance. However, the accuracy of 
such methods is usually limited and some false values of 
identifiers could appear. Therefore, in the second phase, the 
recognized identifier is used to query the HIS for information 
about the entity. Such information is presented to the user of 
smart glasses for the final confirmation (e.g. asking about 
personal data, etc.). When the identity of the entity is 
confirmed the next actions can be performed.  

C. Smart glasses as a source of information 
In this paper we would like to focus on the analysis of the 

potential use of smart glasses for the estimation of vital signs 
(e.g. for screening tests). Vital signs are measurements of the 
body's most fundamental functions. The typical vital signs 
include: body temperature, pulse rate, and respiration rate. 
Smart glasses can use different sensors to measure or estimate 
these vital signs (for the observed person and for the wearer). 
Here, we assume that body temperature can be measured using 
infrared sensors (thermometers) and pulse rate can be 
estimated using videoplethysmography based on video 
acquisition of face images with a visible light camera. 
Additionally, respiration rate can be estimated using analysis 
of thermal image sequences from the nostrils region of a face. 

Body temperature 

Body temperature could be estimated measuring the 
temperature of the skin on the forehead. The remote 
temperature measurements using infrared radiation have been 
found reliable and enough accurate for medical diagnostics 
[18]. In this study we used the OMRON D6T thermal sensor 
embedded in the frame of the smart glasses and additionally 
two different PIR handheld devices: Tech-Med Infrared 
Thermoscope TM-F03B (accuracy ±0.2C) and Microlife IFR 
100 (accuracy ±0.2C). As a reference the Kardioline KL-50 
thermometer was used (accuracy ±0.1C). The D6T sensor was 
initially calibrated using a reference object with known 
temperature and the offset value was calculated. This is a very 
simple procedure and in the future it requires much better 
solution. However, the goal of this activity was to investigate 
if measurements performed using the remote D6T sensor are 
related to measurements obtained using two infrared 
thermometers. Similar differences should be obtained between 
temperature values measured using infrared thermometers 
(forehead) and using the reference thermometer measuring 
body temperature under the armpit. Each measurement was 
repeated (after a short break) and results were averaged. 

Pulse rate 

It was shown by Poh, et al. [19] that pulse rate could be 
reliable estimated using videoplethysmography. In [20] we 

also shown that using fast PCA method applied for the filtered 
signals obtained from a web camera the pulse rate can be 
estimated fast enough to implement the method in mobile 
devices. Such s method requires a small delay related to the 
measurement of at least 3-5 evolution of the heart to reliable 
estimate the pulse rate value. During the acquisition, a series 
of images in visible light were collected with sampling 
frequency from 15Hz to 25Hz. Collected images were 
acquired directly in YUV color mode and, based on our 
previous studies, we chose only V frames for further 
processing. For each frame average values were calculated for 
the face ROI and for the forehead ROI. The procedure was 
repeated for each frame producing a digital signal for each 
ROI.  Data were analyzed in short time windows, i.e. up to 
20s. Each digital signal was then filtered using band pass filter 
between 0.67Hz and 4Hz. Next 3 pulse rate estimators 
(“ePR”) were used: ePR_sp – frequency value for the 
dominating peak in the frequency domain, ePR_ac – 
periodicity of peaks locations for the autocorrelation function 
in the time domain as a function of time lags, ePR_pk - 
number of peaks in the time domain. 

For the ePR_ac estimator the autocorrelation for different time 
lags is calculated and the period is determined calculating an 
average time differences between detected peaks. Another 
pulse rate estimator was based on the number of peaks in the 
filtered signal and it estimates the frequency as: 

   (1) 

where: nPKi – number of inspiration peaks, Ni – the total 
number of samples between the first detected peak and the last 
one. The calculated frequencies were multiplied by 60 to 
obtain results in beats per minute (bpm, e.g. ePR_ac=fpk*60). 

Respiration rate 

Using smart glasses, respiration rate is estimated based on 
the continuous measurement of frames from the thermal 
camera (TAMARISK 320) taken from the nostrils region 
(camera at a distance 0.4-0.7m). It was assumed, that 
measurements take place in the controllable environment, 
where ambient temperature is at least 5 degrees different that 
the body temperature. In this preliminary study it was also 
assumed that the subject is not moving (except small rotation 
movement up to 2 degrees). The multistep procedure is used 
for the estimation of respiration rate parameters. First, a 
sequence of frames was captured during the short time period 
(e.g. 30s windows were used in this experiments). Next, in this 
preliminary study, the data source region (a rectangle with 
width = nose width) was manually selected directly around 
nostrils. The selected ROI was used to calculate the average 
pixel value inside the ROI. The average value was calculated 
for each frame. As a result a 1-D signal (time series) was 
constructed. Time series was filtered using the low pass filter 
(moving average) and using the 4th order Butterworth high 
pass filter to eliminate the baseline drift (fc=0.1Hz). Next the 
respiration rate was estimated using the same estimators (e.g. 
ePR_sp -> eRR_sp) as used for pulse rate. The pressure belt 
(Vernier RMB) was used as a reference to compare respiration 
signals and respiration rate estimators.  

fPK = nPKi (s fn (t))−1( )* fsNi

527



Estimation of vital signs (temperature, pulse rate, and 
respiration rate) was verified during experiment with the 
participation of 11 volunteers (mean age: 39.73y±11.98).  

D. Smart glasses as a filter of information 
When the patient and the connected device are identified 

the health professional can retrieve information about the 
patient from the HIS and from the connected device. Here, we 
assumed that simple observations (e.g. pulse rate) are 
presented to the smart glasses user. The user can review them 
and can add notes as the interpretation. The interpretation can 
be provided in a structured form (e.g. L - “below low normal” 
using a chosen coding system) or using free text. When the 
first form is used the available codes should be provided on 
the display (e.g. as a scrollable list). The user should be able to 
use the code and confirm it. It is much more problematic to 
use free text as it is difficult (and not functional) to use a 
keyboard for text entry in smart glasses. However, speech to 
text interface can be used as it was already used for the 
Google Glass applications (e.g. in [21]). In our study we used 
Android speech recognizer API. The interpretation is added as 
a part of the Observation Resource in the HL7 FHIR message. 

III. IMPLEMENTATION 
Under the eGlasses project (www.eglasses.eu) we have 

been developing the smart glasses platform to provide an 
open, experimental platform that researchers and developers 
can change some electronics, print another cover using 3D 
printer, add sensors or electrodes, change the display, etc. The 
current prototype uses OMAP 4460 processor with 1GB 
RAM, 1024x768 transparent display from Elvision Company, 
5MPx camera, WiFi and Bluetooth 4 wireless interfaces, 
different sensors (accelerometer, gyroscope, magnetometer, 
OMRON D6T thermal sensor, etc.) and extension slots. The 
TAMARISK 320 thermal camera was used to record thermal 
images (resolution 320x240, sensitivity<50mK, spectral band: 
8-14um). The eye tracker embedded in the eGlasses is also 
under development to provide gaze tracking in the context of 
the near-to-eye display and in reference to observed scenes. 
The Android 4.1 OS and Linux Ubuntu OS were tested. Two 
prototypes of the eGlasses platform have been already 
developed (Fig. 3). The difference of those platforms is mainly 
related to the plastic cover and to the display.  

In this study class templates with the fixed number of 
attributes (mapped to JSON properties) were prepared for 3 
different types of HL7 FHIR resources: a Patient, a Device, 
and an Observation.  Similarly the GET/POST HTTP methods 
were used with predefined headers. All functionalities for 
were implemented using Java programming language for the 
Android OS used by the eGlasses. The HAPI-FHIR server 
hosted by University Health Network (http://fhirtest.uhn.ca) 
was used to process FHIR requests.  The server provides a 
nearly complete implementation of the FHIR Specification. 
The simple mapping between JSON properties and UI widgets 
was used to present information from FHIR resources (e.g. 
property name -> a disabled Button, etc.). Due to the limited 
resolution of the display of smart glasses and due to the 
limited perception capacity related to the use of near-to-eye 
display the graphical user interface was limited to only few 

data fields in a data presentation form. The example is 
presented in Fig. 8. 

 
Fig. 3. The eGlasses prototypes with three sources of potential medical data: 
the visible-light imaging camera, the thermal camera, and the thermal sensor. 
Below electronic board from the side panel of the eGlasses is presented.  

In this study a Medical Device was simulated using software 
server application running on a PC computer. The JSON 
notation was used to represent data transmitted from the 
simulated medical device. 

The estimated vital signs and related RESTful based 
architecture were used to qualitatively evaluate data exchange 
procedures between smart glasses and the healthcare 
information system, implemented as a HL7 FHIR 
demonstration server. All 3 scenarios were evaluated: smart 
glasses used to obtain data from the server, smart glasses as a 
source of vital signs, and smart glasses as a filter of 
information. The accuracy of vital signs estimation with the 
use of smart glasses was analyzed using calculated absolute 
error values between the proposed methods and reference 
methods. The mean absolute error, the standard deviation of 
the mean, and the mean square error were used as quantitative 
measures of the estimation accuracy. Additionally, data 
exchange processing times were measured for two categories 
of actions: read (GET FHIR resources) and create (POST 
FHIR resource). The smart glasses were connected to the 
Internet using WiFi router in Poland, while the FHIR server 
was located in Canada.  

IV. RESULTS 

A. Smart glasses as a source of information 
In Table 1 parameters describing quality of pulse rate 
estimation are presented in reference to the measurement 
performed using the pulse oximeter with the finger probe. The 
mean value represents the mean absolute error between the 
pulse rate value estimated using the given estimator and the 
reference measurement. Similar method was used for the 
standard deviation. The Mean Square Error represent also 
mean, squared difference between estimated values and the 
reference. The coefficient of determination, R2, represents the 
linear correlation (fitting) between distribution of estimated 
pulse values and reference values. The chart, shown in Fig. 4, 
presents the distribution of measured reference values and 
values estimated for the best estimator. In Fig. 5 the 
autocorrelation values calculated for different time lags are 
presented together with the detected peaks used to calculate an 
average value of periodicity (subject No. 1). 
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TABLE I.  RESULTS OF PULSE RATE ESTIMATION 

  Face ROI Forehead ROI 
  ePR_

sp 
ePR_ac ePR_pk ePR_sp ePR_ac ePR_pk 

Mean 1.23 0.99 3.10 1.07 1.13 2.05 
Std. Dev. 1.19 0.67 2.52 0.89 1.08 1.33 
MSE 2.80 1.40 15.37 1.86 2.34 5.80 
R2 0.97 0.99 0.89 0.99 0.97 0.99 

 

 
Fig. 4. The distribution of mesured reference values (black) and values 
estimated for the best etimator (ePR_ac) for face and forehead ROIs. 

 
Fig. 5. The autocorrelation values calculated for different time lags together 
with the detected peaks used to calculate an average value of periodicity  

In Fig. 6 an example of the filtered pulse wave signal is 
presented (extracted for the V component, for forehead ROI, 
subject No 1). Additionally the detected peaks are presented.  

Examples of respiration rhythm signals measured using the 
described method are presented in Fig. 7. Since the ambient 
temperature was lower that the body temperature therefore the 
inhalation period can be observed as decrease of the signal and 
exhalation as increase of the signal. This can be observed in 
Fig. 7 (top). In Table 2 parameters describing quality of pulse 
rate estimation are presented (the same as for pulse rate) in 
reference to the manually indicated inspiration start events for 
the measurement performed using the pressure belt. Results 
obtained for temperature measurements were poor. The mean 
difference between the temperature values measured using 
remote infrared thermometers (forehead) and the reference 
thermometer (under armpit) were: 0.9C (Omron D6T) and 
0.4C and 1.1C for other two infrared thermometers. However, 
there was high correlation (R2=0.84) between measurements 
performs with remote infrared thermometers. 

 
Fig. 6. An example of the filtered pulse wave signal is presented (extracted 
for the V component, for forehead ROI, subject No 1).  

 

 
Fig. 7. Top: respiration rhythm extracted from the sequence of thermal 
images. Bottom: filtered respiration signals for the belt (in black) and for the 
thermal camera (in green) with detected inspitation starts and ands (light gray) 

TABLE II.  RESULTS OF RESPIRATION RATE ESTIMATION 

  Thermal Belt 
  eRR_sp eRR_ac eRR_pk eRR_sp eRR_ac eRR_pk 
Mean 0.93 0.40 0.72 0.87 0.43 0.39 
Std. Dev. 0.59 0.38 0.61 0.57 0.42 0.53 
MSE 1.17 0.29 0.85 1.05 0.34 0.41 
R2 0.89 0.98 0.95 0.90 0.97 0.97 

 

B. Smart glasses and data exchange using HL7 FHIR 
The patient’s identifier, recognized using a marker or face 

features, was used to formulate the GET query for the FHIR 
server. Vital signs parameters (body temperature, pulse rate, 
respiration rate) estimated using sensors of eGlasses were used 
to send POST requests to the server with different Observation 
resources (separate or as a bundle).  The average read (GET) 
operation time was 6.4ms±3.71ms (server processing time) 
and the average create (POST) operation time was 
12.2ms±3.49ms. The average time of data rendering from the 
JSON message to the GUI form was shorter than 5ms.  
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For read operations (i.e. get data for the identified person 
or the device) the entire process from the start of QR-code 
scanning to the end of results rendering was shorter than 1s. 
According to the “Powers of 10” rule 
[http://www.nngroup.com/articles/powers-of-10-time-scales-
in-ux/] when the computer takes more than 0.1 second but less 
than 1 second to respond, users notice the short delay, but they 
stay focused on their current train of thought. Finally, 
introducing simple interpretations to observations depends on 
the data input method. In this study we used speech 
recognition. The total interaction time mainly depends on the 
performance of voice recognition algorithm and the related 
service. We used the Android speech recognition service using 
the SpeechRecognizer class from the Android API. Several 
tests were performed for short statements (i.e. up to 7 words, 
e.g. "below low normal", "heart rate value above normal 
limit"). The delay, defined as the time period between the end 
of speech and the time when the related text is presented on 
the display, was shorter that 2s. We did not evaluate the 
accuracy of the voice recognition procedure (it has been 
evaluated by other groups, e.g. in [22][23]). In Fig. 8 an 
example of the graphical user interface (VitalSignsViewLayout 
class) is presented. It is automatically added as an overlay 
view above the camera preview after the successful 
identification of the patient. Data values should be presented 
when all measurements are completed. Additionally, the text 
note from the recognized speech can be presented. 

 
Fig. 8. An example of the graphical user interface  

V. DISCUSSION AND CONCLUSIONS 
In this paper we presented system architecture and three 

use cases for the interaction of smart glasses with a healthcare 
information system. When the entity is identified, information 
about the entity can be retrieved using query request send to 
an information system. Using the reference FHIR server we 
verified simple exchange of data between eGlasses and the 
server based on recognized patient identifier. The method is 
simple, easy for the implementation, but provides fast 
information for healthcare professionals. In this study we limit 
the number of properties that can be displayed on the smart 
glasses display. For this task we simply mapped the JSON 
properties from a Patient FHIR Resource to graphical widgets 
of the Android API. The typical system response time, i.e. 
from the beginning of marker scanning to the end of data 
rendering from the FHIR server, was below 1s.  This 
processing time mainly depends on the entity identification 
time. Presented results were obtained for the QR-code 
(4.4cm/4.4cm, camera zoom set to 2x) scanned from the 

distance not longer than 1m (incandescent light). Similar 
results were achieved for bar codes (Code 128, physical width 
4.4cm) for the distance up to 50cm. Of course worse results 
would be probably obtained for scanning from longer 
distances, using smaller sizes of codes, etc. Related 
experiments and results were presented in [13][14]. Similar 
aspects are associated with the identification of entities based 
on visual features. In real situations a large number of 
subjects/devices would be used, so the recognition process 
would require more computation resources. As we shown in 
[14] the recognition speed for the modified Local Ternary 
Patterns method was 18ms for a face. Therefore, the 
identification process for the real HIS should be implemented 
as a service of the HIS (or a gateway [17]).  

In this study we also proposed the use of smart glasses for 
the estimation of vital signs.  Three parameters were 
considered: body temperature, pulse rate, and respiration rate. 
Using thermal sensor (Omron D6T) eGlasses can quickly 
measure the temperature of the skin (e.g. on the forehead), 
however the obtained accuracy (0.9C) was poor. It is probably 
the result of the simplified calibration procedure. However, 
other tested infrared thermometers (clinically verified) showed 
similar, poor accuracy. Further studies with more subjects are 
required. The results obtained for the pulse rate estimation 
shown very good results, practically for all estimators. It is 
important to underline that the reference measurement 
performed using finger pulse oximeter provides averaged 
results of last few instantaneous pulse rate values. So within 
20s the presented values are not stable but often differ about 
2bpms. The best results of the pulse estimation were obtained 
ePR_ac estimator. It is not very complicated to calculate and 
has not limits of the estimator based on frequency domain 
analysis (limited frequency resolution). Also for the estimation 
of respiration rate the same estimator produced best results. 
The respiration rate can be easily and reliably estimated using 
the described method. The method has of course limits related 
to ambient temperature value (should be different that body 
temperature) but this requires further studies. There are many 
other methods for remote monitoring of respiration rate 
proposed in literature. Many of them are based on analysis of 
video recorded from the chest region [24]. Those recording are 
typically performed using visible light camera [25] or infrared 
cameras [26][27]. Some studies also used thermal recordings 
from face region [28]. In our work we proposed the use of 
very small thermal camera embedded in smart glasses and we 
evaluated different RR estimators. Measurements using smart 
glasses are potentially possible in many practical situations, 
e.g. when visiting a patient at a hospital ward, at airports for 
screening, etc. Additional research should be also performed 
for such situations as nasal congestion, rhinorrhea, etc.  

In the presented experiments we used wireless mouse as 
the input device for the eGlasses. Of course, it is not the 
optimal solution for smart glasses. Therefore, in the eGlasses 
project, we are developing three interfaces for data input: 
optical proximity radar used for hand gesture recognition [29], 
gaze-based interaction subsystem [30] and the use of smart 
fabrics. This is currently the subject of further research. 

Concluding in this paper we: a) analyzed the potential role 
of the smart glasses as a medical device for vital signs 
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estimation; b) designed, implemented and tested the system 
architecture for data exchange, between smart glasses and 
healthcare information systems using the automatic 
identification of patients and devices, and c) designed, 
implemented and tested the system architecture for data 
exchange between smart glasses and HIS using FHIR.  

Further improvements of the methods based on video 
recordings can use motion compensation, automatic ROI 
detection, etc. The technological progress enables the 
miniaturization of sensors. For example, in the next eGlasses 
prototype the very small thermal camera will be also used (the 
Flir Lepton sensor [31]). Integrated and synchronous 
measurements of different vital signs play important role in 
many medical applications, for example in sleep analysis [32]. 
Smart glasses enable to combine measured medical 
information with contextual information (location, time, etc.). 
Using the smart glasses system the senses of a doctor could be 
extended by different sensors. Additionally, knowledge of a 
healthcare professional could be also extended by the use of 
connected systems (e.g. knowledge databases, data-mining 
systems, content-based retrieval systems, etc.). In this paper 
we showed simple examples of such activities.  
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