Loading...
hidden

Mobile-Version anzeigen

Meta-Navigation

Startseite – Hochschule Luzern

Sprachwahl und wichtige Links

  • Zum Inhalt springen
  • Kontakt
  • Login
  • De
Suche starten

Hauptnavigation

Departementsnavigation

  • Technik & Architektur
  • Wirtschaft
  • Informatik
  • Soziale Arbeit
  • Design & Kunst
  • Musik

Unternavigation

  • Studium
  • Weiterbildung
  • Forschung
  • Institute
  • Über uns

Unternavigation

Breadcrumbs-Navigation

  1. Technik & Architektur Technik & Architektur
  2. Über uns Über uns
  3. Institute im Bereich Technik Institute im Bereich Technik
  4. Elektrotechnik Elektrotechnik
  5. edgeAI@T&A edgeAI@T&A
  6. Vision-based Vehicle Classification Vision-based Vehicle Classification

Vision-based Vehicle Classification Since the mid-1990s, laser scanners have been predominantly used worldwide for application solutions in road and rail traffic. 

The video camera systems that existed 20 years ago were displaced within a very short time for classification and volumetric tasks, since the distance information of the laser scanners guarantees in principle a very simple, robust and non-computationally intensive analysis. However, laser scanners are now reaching their technical limits, in particular due to the finite scan rate, which (especially for fast vehicles) only allows a very limited spatial resolution. This effect is exacerbated by adverse weather conditions. In the project "Contactless axle detection for traffic monitoring", the project partners were able to convincingly demonstrate that vision-based axle detection in flowing road traffic significantly outperforms the detection accuracy of laser scan systems. Therefore, it is becoming apparent that video camera systems are reclaiming the market because these systems, in principle, provide depth information in addition to gray scale or color information by fusing data from multiple cameras, and do so at full video rate and resolution. Therefore, the aim of this project is to investigate a method for vision-based counting and classification of vehicles. The main USP is to achieve the TLS 8+1 A1 standard for the first time for a vision-based product on the market and thus to surpass the performance of current laser scan-based systems. For this purpose, the immense scientific-technological progress of the last years in computer vision shall be used in the project, both in the hardware development (camera and embedded computer platforms) and the algorithms for machine learning, especially for the classification with deep learning methods.

Publictions

hidden
  • Zahn, Klaus; Caduff, Andreas; Bucher, Peter; Hofstetter, Jonas & Rechsteiner, Martin (18.04.2020). Fine-grained Vision-based Vehicle Classification. International Conference on Advances in Signal Processing and Artificial Intelligenc. Caduff, Andreas; Zahn, Klaus; Bucher, Peter; Hofstetter, Jonas & Rechsteiner, Martin (2021). Exploring the Limits of Vanilla CNN Architectures for Fine-Grained Vision-Based Vehicle Classification. SpringerLink [Elektronische Daten] / Springer Science+Business Media, 202-212.

Prof. Dr. Klaus Zahn

Co-Leiter CC Intelligent Sensors and Networks

+41 41 349 35 73

E-Mail anzeigen

Footer

FH Zentralschweiz

Links zu den Social-Media-Kanälen

  •  Facebook
  •  Instagram
  •  Twitter
  •  LinkedIn
  •  YouTube
  •  Flickr

Kontakt

Logo Technik & Architektur

Hochschule Luzern

Technik & Architektur

Technikumstrasse 21
- 6048 Horw

+41 41 349 33 11

technik-architektur@hslu.ch

Direkteinstieg

  • Für Studierende
  • Weiterbildungsinteressierte
  • Für Mitarbeitende
  • Medienschaffende

Quicklink

  • Personensuche
  • Jobs & Karriere
  • Organisation des Departements Technik & Architektur
  • Facts & Figures
  • Diversity
  • Räume mieten
  • Bibliothek

Statische Links

  • Newsletter abonnieren
  • Datenschutzerklärung
  • Impressum
  • Institutionell akkreditiert nach HFKG 2019–2026
Logo Swissuniversities

QrCode

QrCode
Wir verwenden Cookies, um Ihnen eine optimale Nutzung der Website zu ermöglichen und um Ihnen auf unserer Website, auf anderen Websites und in sozialen Netzwerken personalisierte Werbung anzuzeigen. Indem Sie diesen Hinweis schliessen oder mit dem Besuch der Seite fortfahren, akzeptieren Sie die Verwendung von Cookies. Weitere Informationen zu diesen Cookies und wie Sie die Datenbearbeitung durch sie ablehnen können, finden Sie in unserer Datenschutzerklärung.
OK