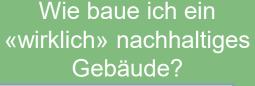


Neue Resultate - Neue Prozesse

Schweizer Bauforum Nachhaltiges Bauen, Mittwoch, 16. November 2022, Rotkreuz


Markus Steinmann, Senn Technology AG

Wie alles begann...

Herbst 2019

Wie baue ich ein «wirklich» nachhaltiges Gebäude?

Markus Steinmann El. Ing. HTL / FH Geschäftsführer Senn Technology AG

Johannes Senn lic. oec. HSG Eigentümer Senn Gruppe

«Neue Resultate - Neue Prozesse»

«Probleme kann man niemals mit derselben Denkweise lösen, durch die sie entstanden sind.» Albert Einstein.

Vergleich Entwicklungsprozesse

Bekannter Prozess

Raumprogramm

Analyse & Konzept

Konstruktion & Materialität

Bauteil

Erfüllung Programm

Leed Nachhaltigkeit im

Ziele der Überprüfung Kontinuierliche

Beitrag

Fachplaner leisten ihren

Alle

Neuer Prozess

Projektvorgaben mit Nachhaltigkeitszielen

Bauteil & Konstruktion

Gesamtkonzept

Projekt

Erfüllung

Projektvorgaben

Nachhaltigkeitszielvorgaben

Kriterien der Nachhaltigkeitszielvorgaben

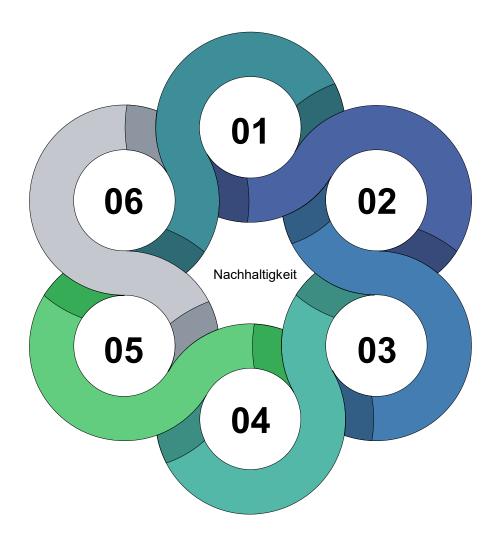
- In welchen Bereichen der Nachhaltigkeit erreichen wir die grösste Wirkung?
- Welche Teil-Bereiche können wir wirkungsvoll beeinflussen?
- Welche Massnahmen können im Bauprojekt umgesetzt werden?
- Welche Wirkung haben unsere Massnahmen heute und in der Zukunft?
- Welchen Nutzen haben wir mit unserem Engagement?
- Wie können wir unsere Versprechen beweisen?

Von negativ zu Null zu positiv

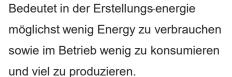
1. Resource positive

Wenn in der Erstellung nicht mehr Ressourcen verschwendet werden als nötig. Förderung der Biodiversität

6. Investment positive



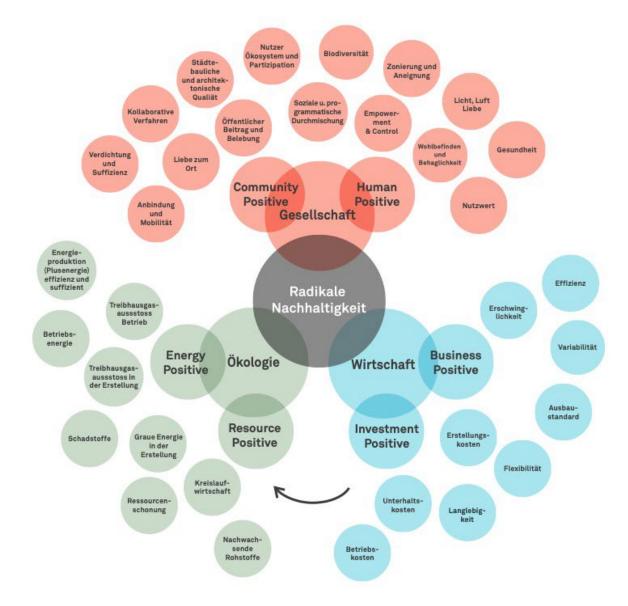
Grosse Flexibilität und niedrige Lebenszykluskosten mit einer nachhaltigen Rendite.


5. Business positive

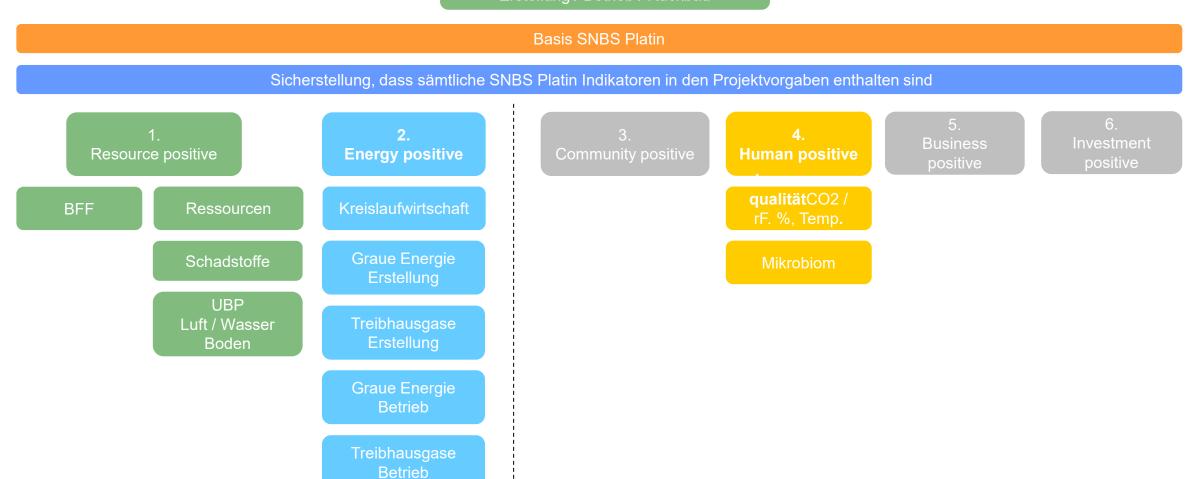
Eine erfolgreich und nutzerbringende Gemeinschaft mit hohem Standard, welche an Bedürfnisse stetig angepasst werden können

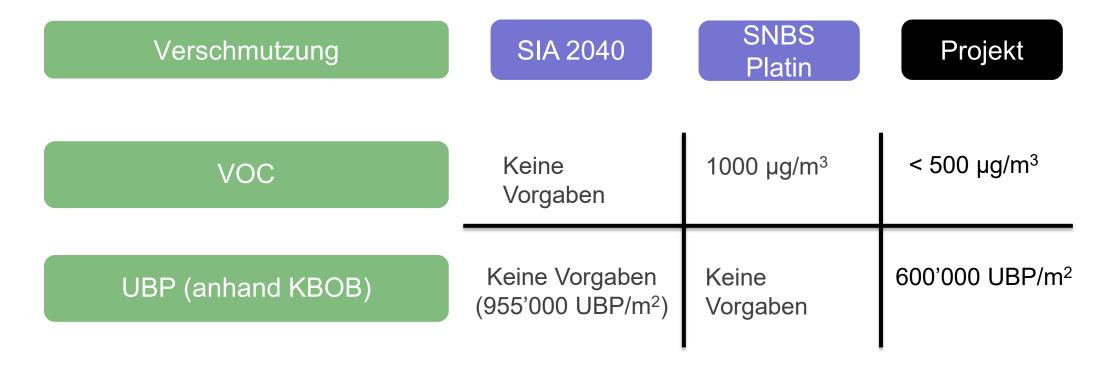
2. Energy positive

3. Community positive


Ein Gesunde Durchmischung sämtlicher Ansprechsgruppen, sowie Akzeptanz der Immobilie bei Nachbarn und Nutzern zu maximieren.

4. Human positive


Eine bestmöglichste Aussenraumqualität für sämtliche Lebewesen schaffen zu können.



Konzept der Nachhaltigkeit

Ökologie Erstellung / Betrieb / Rückbau

Werte in Klammern nach SIA 2040 mit Beton

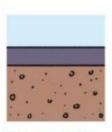
_			
Ressourcen Kreislaufwirtschaft	SIA 2040	SNBS Platin	Projekt
Anteil Baumaterialien aus nicht erneuerbare Ressourcen (Massen anhand KBOB)	Keine Vorgaben	Keine Vorgaben	< 25%
Anteil Baumaterialien welche aus erneuerbaren Ressourcen bestehen (Massen anhand KBOB)	Keine Vorgaben	Keine Vorgaben	> 75%
Art reine Baumaterialien welche wieder-verwendet werden können (Massen anhand KBOB)	Keine Vorgaben	Keine Vorgaben	> 50%
Anteil von wiederverwendeten Bauteilen (Massen anhand KBOB)	Keine Vorgaben	Keine Vorgaben	> 15%

Klimaerwärmung - relative Zahlen	SIA 2040	SNBS Platin	Projekt
Graue Energie Erstellung (anhand KBOB)	40.0 kWh/m²*a	30.6 kWh/m²*a	28.0 kWh/m² *a
Treibhausgase Erstellung (anhand KBOB)	9.0 kg/m ² *a	8 kg/m² *a	5.5 kg/m² *a
Graue Energie Betrieb (anhand Simulationsberechnungen)	80.0 kWh/m ² *a	72 kWh/m² *a	40.0 kWh/m² *a
Treibhausgase Betrieb (anhand Simulationsberechnungen)	4.0 kWh/m² *a	3.6 kWh/m² *a	0.0 kWh/m² *a
Produktionsenergie (anhand Simulationsberechnungen)	Keine Vorgaben	2.3 kWh/m ² *a	65.0 kWh/m² *a

SNBS SIA 2040 Klimaerwärmung - absolute Zahlen Projekt **Platin Graue Energie Erstellung** Keine Vorgaben 1'100 kWh/m² Keine (anhand KBOB) (1'620 kWh/m2) Vorgaben Keine Vorgaben Treibhausgase Erstellung 250 kg/m² Keine (anhand KBOB) (459 kg/m2) Vorgaben

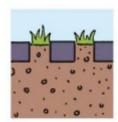
Werte in Klammern nach SIA 2040 mit Beton

Innenraumklima	SIA 2040	SNBS Platin	Projekt
CO2 (anhand Simulationsberechnungen)	Keine Vorgaben	1000 – 1400ppm	< 1000 ppm
Raumluftfeuchte (anhand Simulationsberechnungen)	Keine Vorgaben	40 – 60%	40 - 60%
Mikroben (anhand Materialwahl)	Keine Vorgaben	Keine Vorgaben	70% poröse Oberflächen
Behaglichkeit (anhand Simulationsberechnungen)	Keine Vorgaben	Oberflächentemp. < 5 °C gegenüber Raumlufttemp.	


Biodiversität

 $\mathsf{BFF} = \frac{Naturhaushaltswirksame\ Fläche}{Grundstücksfläche}$

Die BFF Methode wurde von der Stadt Berlin in Zusammenarbeit mit der Humbolt-Universität Berlin entwickelt.


Anrechnungsfaktor: 0,5

Anrechnungsfaktor: 0,0

Anrechnungsfaktor: 1,0

Anrechnungsfaktor: 0,4

A2 (Zielwert Gewerbe: 0.30)					
Flächentyp	Fläche m2	Anrechnungsfaktor	BFF-Fläche m2	Typ gemäss BFF	
Versickerungsfähige Verkehrsflächen	108.0	0.2	21.6	Durchlässige Belagsflächen	
Innenhof begrünt	300.0	1	300	Vegetationsfläche mit Bodenanschluss	
Innenhof Wasserfläche	190.0	0.5	95	Wasserfläche	
Fassade begrünt	1'470.0	0.5	735	Bodengebundene Vertikalbegrünung	
Umgebungsfläche begrünt	272.0	1	272	Vegetationsfläche mit Bodenanschluss	
Summe Naturhaushaltswirksame Flächen	2'340.0		1423.6		
Grundstückfläche	3'671.0		3671	Gebäudegrundfläche plus Aussenflächen	
BFF Wert			0.388		

Amortisation der «Grauen Energie»

Ökologie

SIA 2040

SNBS
Platin

Projekt

Amortisationszeit in Jahren

Keine Vorgaben

Keine Vorgaben

< 30 Jahre

Berechnung der Amortisationszeit: Graue Energie / (Produktionsenergie – Betriebsenergie)

Kreislaufwirtschaft

Materialien und Konstruktionen

Fokus auf:

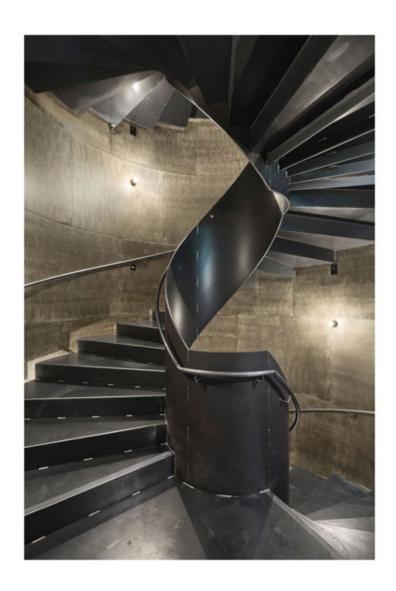
Nachwachsende Rohstoffe, Art reine Materialien, heimische Produkte, wiederverwertbare Materialien, wiederverwendbare Materialien, Re-Use Bauteile, zerstörungsfreie Ersatz von Bauteilen, keine Einlagen, Trennen von Struktur / Fassade und Technik

Vermeidung von:

Verbundstoffe, Zemente, Kunststoffe, Klebstoffe, Metalle, Gips, Bauteilen mit lange Transportwegen

Nachwachsender Rohstoff

Lehm als rückführbarere lokaler Rohstoff


Zellulose als rezykliertet Rohstoff

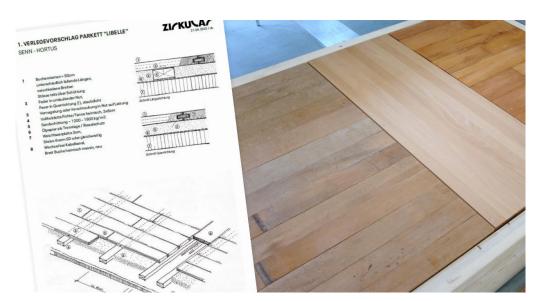
Strohballen als nachwachsendes Nebenprodukt

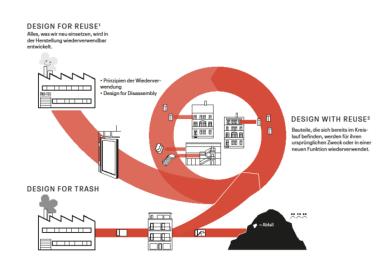
Art reine Baumaterialien

Wiederverwendete Bauteile

Zusammenarbeit mit Zirkular

Ausbau Test





Herausforderung der Kreislaufwirtschaft

- Zeitlicher Ablauf der Materialbeschaffung.
- Kosten des zerstörungsfreien Ausbaus, der Lagerung und des Einbaus.
- Garantien auf das Material bei investorentauglichen Projekten.
- Verfügbare Mengen der benötigten Materialien.

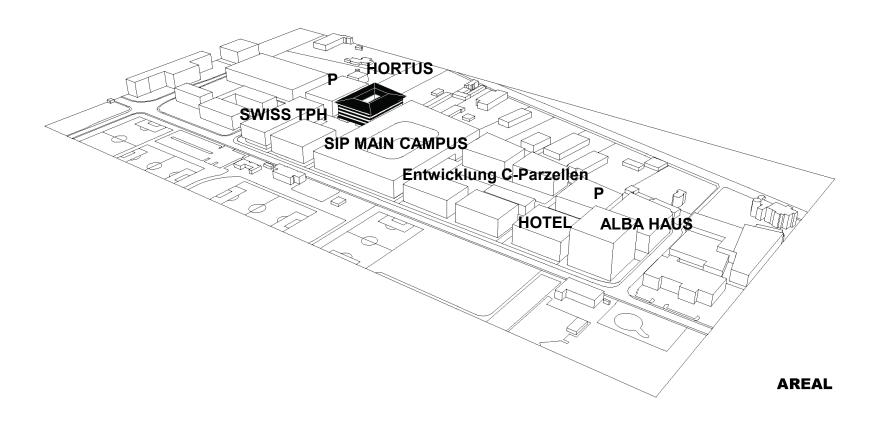
Chanen der Kreislaufwirtschaft bei Bauprojekten

Anforderungen an die Kreislaufwirtschaft:

- Materialien trennbar einbauen.
- Materialpass / Inventar erstellen.
- Umsetzung der Trennbarkeit der Bauteile.
- Neue Geschäftsmodelle und spezialisierte Unternehmungen.

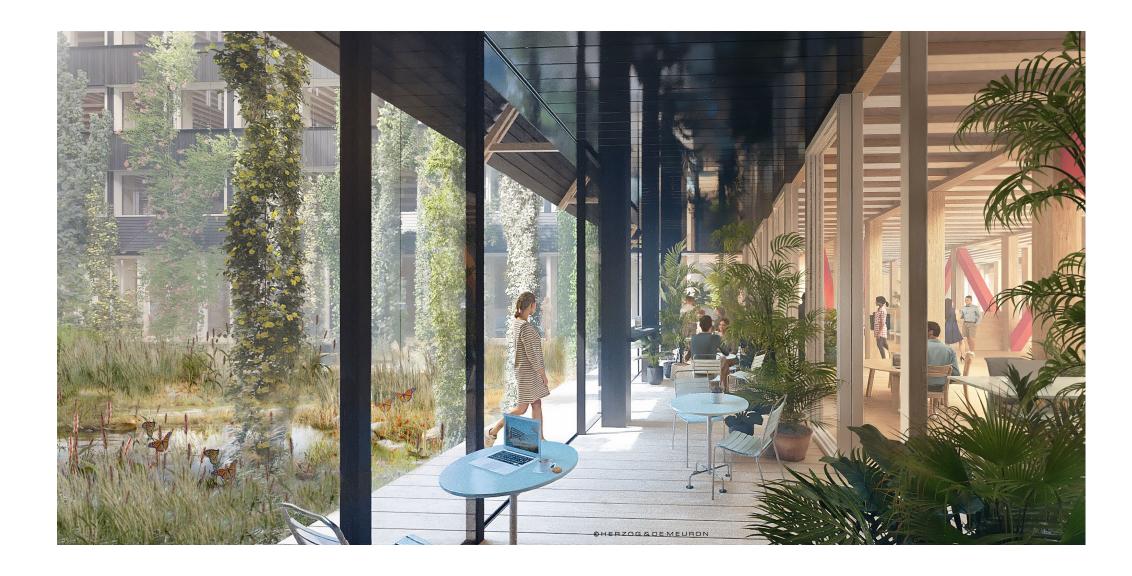
Nutzen für die Zukunft:

- Am Nutzungsende dient das Gebäude als Bauteilmine.
- Zu jedem Zeitpunkt sind die verwendetet Materialmengen bekannt.
- Am Nutzungsende der Immobilien ist der Materialwert kalkulierbar.
- Einzelne Bauteile können jederzeit einfach ersetzt werden.


Das «Resultat-Projekt»

HORTUS – House of Research, Technology, Utopia and Sustainability

WEIL AM RHEIN FLUGHAFEN SAINT-LOUIS RIEHEN RHEIN BASEL BIRSFELDEN ALLSCHWIL BAHNHOF BINNINGEN

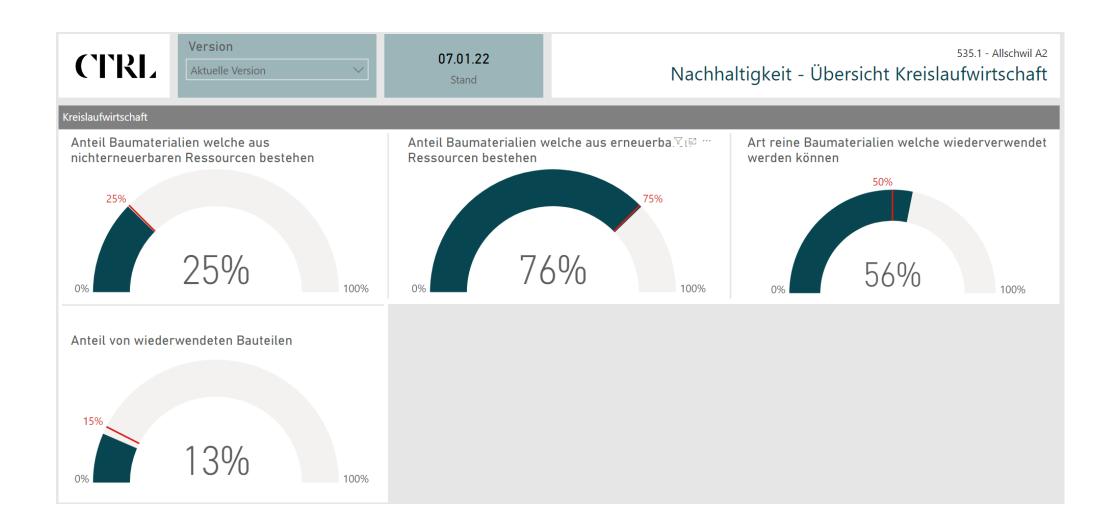


S I

N N

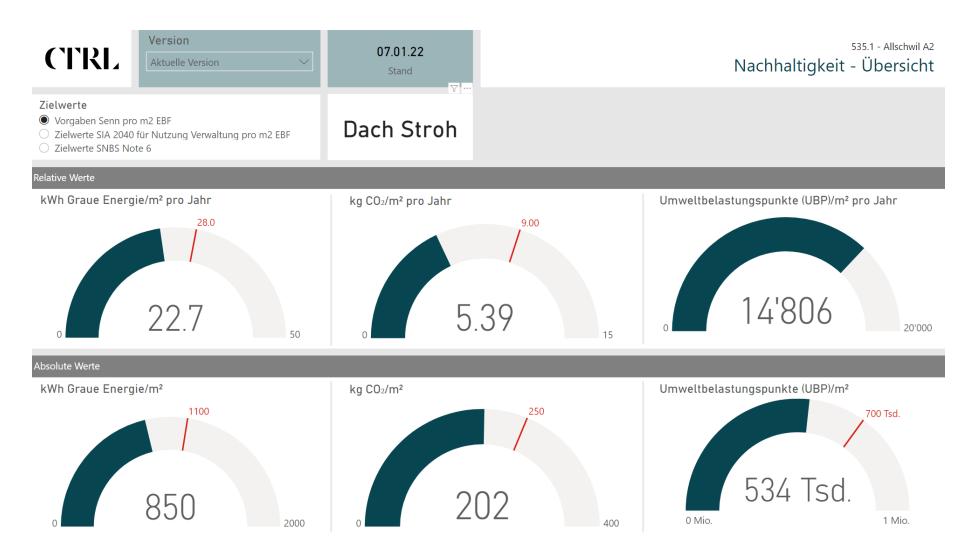
N N

N



N N

Messbarkeit - Beweisführung


Dashboard für die Nachhaltigkeit

Grundlagenberechnungen anhand KBOB Listen

Total Masse in kg	Total Massen aus nicht erneuerbaren Ressourcen in kg	Total Massen aus erneuerbaren Ressourcen in kg	Art reine Massen welche wiederverwendete werden können in kg	Anteil von wiederverwendetet Bauteilen in kg
2'010'692.00	2'010'692.00			
5'440'178.64	63'315.12	5'376'863.52	4'763'826.75	1'230'244.95
1'844'875.69	185'964.04	1'664'809.13	437'901.11	109'449.98
119'720.70	119'720.70			
73'725.00	73'725.00			
9'489'192.03	2'453'416.86	7'041'672.65	5'201'727.86	1'339'694.93
100%	26%	74%	55%	14%

Dashboard für die Nachhaltigkeit

Danke für Ihre Aufmerksamkeit