Efficient Evolutionary Architecture Search for
CNN Optimization on GTSRB

Fabio Marco Johner
Competence Center Electronics (CCE)
Lucerne University of Applied Sciences and Arts (HSLU)
Lucerne, Switzerland
fabio.johner@hslu.ch

Abstract—Neural network inference on embedded devices has
to meet accuracy and latency requirements under tight resource
constraints. The design of suitable network architectures is
a challenging and time-consuming task. Therefore, automatic
discovery and optimization of neural networks is considered
important for continuing the trend of moving classification tasks
from cloud to edge computing.

This paper presents an evolutionary method to optimize a
convolutional neural network (CNN) architecture for classifi-
cation tasks. The method runs efficiently on a single GPU-
workstation and provides simple means to direct the tradeoff
between complexity and accuracy of the evolved network. Using
this method, we achieved a 11x reduction in the number of
multiply-accumulate (MAC) operations of the winning network
for the German Traffic Sign Recognition Benchmark (GTSRB)
without accuracy reduction. An ensemble of four of our evolved
networks competes the winning ensemble with a 0.1% lower
accuracy but 70x reduction in MACs and 14x reduction in
parameters.

Index Terms—ML, CNN, Optimization, EAS

I. INTRODUCTION

In the last few years neural networks have been success-
fully used for image classification tasks. The architectures of
those networks have often been designed by human experts.
Nowadays, automated methods to discover such architectures,
known as architecture search algorithms, have been developed
to reduce the human work required to find a suitable architec-
ture for a given problem e.g. [1], [2], [3], [4], [5], [6].

There are different techniques used in neural architec-
ture search like numerical optimization [2], recursive neural
networks (RNN) which propose architectures [4], or search
strategies that are based on evolutionary algorithms (EA), often
called evolutionary architecture search (EAS). Using such evo-
lutionary techniques, networks that have higher performance
than those designed by humans were recently produced in e.g.
[71, [8], [9], [10], [11]. However, these approaches require
large amounts of computational power (a computer farm with
450 GPUs was used in [8]), which might not always be easily
accessible. In this paper we therefore aim at discovering neural
network architectures using only modest computing resources.

The current trend to move neural network inference from
the cloud to edge devices is motivated by latency, energy and
privacy considerations [12]. Since computational power, en-
ergy and memory resources are often limited in edge devices,

Juergen Wassner
Intelligent Sensors and Networks Laboratory (ISN)
Lucerne University of Applied Sciences and Arts (HSLU)
Lucerne, Switzerland
Jjuergen.wassner @hslu.ch

there is an increasing demand for neural networks that have
low computational complexity and reduced amounts of param-
eters. Such reduced networks often exhibit lower classification
accuracy which in general results in a performance vs. resource
tradeoff [13].

Our main goal is to automatically optimize a neural network
architecture using relatively low computing power during the
search process. The use of EA is motivated by the promising
results obtained in [7] and [8] which show that this method
can produce good results. The network is optimized for a
specific dataset, which in this work is the German Traffic
Sign Recognition Benchmark (GTSRB) [14]. We start from an
initial network reference architecture that should be optimized.

The EA is designed to be used with low computational
requirements, in our case a single desktop computer with
one GPU (see section Hardware). This allows the widespread
usage of this method as the hardware costs are low.

Our main contributions are:

o We show that the proposed generational EA can be used
to optimize neural network architectures for the GTSRB
dataset regarding the computational cost and memory
requirements for inference. The resulting architectures are
comparable to the current state-of-the-art [2].

e We show that it is possible to use EAS with small
computational footprint consisting of only one GPU while
still achieving good results over days of runtime. This
proves the technique feasible if large scale computational
resources are not affordable/available and still allows for
future upgrades and speedups if desired.

o We further show that it is possible to build ensembles
from the network created during the EAS, which outper-
form the initial reference network while exhibiting lower
MACs and parameter count.

The rest of the paper is organized as follows: In section II
other work related to this one are mentioned and similarities
and differences highlighted. In section III we present our
approach and the overall concept with the details described in
section I'V. In section V the experimental setup is described and
results are presented and discussed in section VI. We conclude
the paper in section VIL

2D-Region 1D-Region

I | [

Input
C+BN
C+BN

p
Flattening
FC
FC
FC + Softmax
Output

Fig. 1. Overall CNN architecture with optimization regions

II. RELATION TO OTHER WORK

As in [7] we employ simple evolutionary techniques and
our method doesn’t require any human participation once the
process is started. Our method creates fully-trained models
that are specialized for specific tasks as suggested in [1].

A similar work is [10] where a Monte Carlo algorithm is
used to propose network architectures.

Our EA is different from others currently used in EAS,
where often a repeated pairwise competition of random indi-
viduals is used [7], [8], [9] or the search space doesn’t encode
the fully-connected layers of the network [11].

Furthermore we don’t use parameter sharing like in [6] and
create the whole architecture of the network and not cells for
cell-based neural network like in [5].

Our round-based EA with increasing selective pressure and
stochastic universal sampling can be compared to the aging
evolution in [8] as it also avoids to focus too early on good
models and thus better explores the search space.

III. OVERALL CONCEPT AND APPROACH

Our method starts from a reference architecture, yields fully-
trained models and allows to easily steer the optimization
process towards different goals. Furthermore, the output of
the algorithm can be manually post-processed or used as
input for other optimization algorithms although this is not
a requirement.

A. Search Space

The search space used in this work is based on layers and
the common structure of a CNN as illustrated in Fig. 1. The
architecture of a neural network starts with the input of an
image. This is followed by a number of layers that work on a
2D basis. The number of layers in this "2D-Region” is neither
predetermined nor limited. Possible layer types are:

¢ 2D Convolution (including batch normalization)
« Pooling
« Dropout

Subsequently, the features are transformed from 2D to 1D with
the help of a Flattening layer. In the following 1D region” the
number of layers is again neither predetermined nor limited.
Possible layer types are:

TABLE I

EXPERIMENTAL SEARCH SPACE USED IN THIS WORK

Layer type

[

Layer Parameters [Parameter values

2D Convolution

of kernels
stride

kernel size
padding
activation
dropout usage
dropout rate
batch-norm usage

€{1,2,...,49,50}
€{1,2,4,6,8,10}
Square, € {3,5,7,9,11}
valid or same

linear or ReLU

true or false

€ {0.25,0.3,...,0.7,0.75}
true or false

Dense/
Fully-connected

of neurons
activation
dropout usage
dropout rate

€ {20, 30, ...,490, 500}
linear or ReLU

true or false

€ {0.25,0.3,...,0.7,0.75}

stride €{1,2,4,6,8,10}
Pooling kernel size Square, € {2,3,...,10,11}
padding valid or same
Dropout dropout rate € {0.25,0.5,0.75}

o Dense/Fully-connected
o Dropout

The optimization parameters for each layer type, together with
the supported value range, can be seen in Tab. 1.

The final layer of the network is fixed to be a dense layer
with the number of neurons corresponding to the number of
outputs required by the data set. The activation used in this
last layer is the Softmax function to convert the outputs to
probability scores for each class label.

The search space defined above constrains the architectural
structure of the neural network without limiting the number
of layers. This ensures that the same optimization algorithm
can be applied to data sets of different sizes. We bound the
complexity of the target network by other means, i.e. the
maximum number of weight parameters W,,,, and the max-
imum number of MAC operations M, ... More specifically,
in this work W, and M,,,, are given by the corresponding
values of the initial network in order to ensure lower or equal
complexity for the target network. Note however, that this
choice is arbitrary and can be adapted to throughput and/or
resource constraints of the embedded system at hand.

Our search space defined above is similar to the search space
used in [1] but with a stronger overall design pattern. It differs
from other work like [8] where the architectures for the cells
of a cell-based network are generated instead of the whole
network architecture.

B. Evolutionary Algorithm

The EA used in this work is summarized in Algorithm 1.
It acts on a population of models in which each individual
model represents a neural network architecture. An individual
is always created by selecting an existing one, making a copy
of its architecture and modifying this copy with a random
mutation. In order to not waste computational resources, it is
ensured throughout the entire runtime of the algorithm that
the same architecture is not created, and thus trained, twice.
This is motivated by the assumption that the data set achieves
comparable accuracy with every training run, and thus the

Algorithm 1 Evolutionary Algorithm
Require: refModel, I,n
generations <— 1

> Number of EA cycles

population < refModel > Start with reference network

while |population| < n do > Init Population
tmpModel <— COPYANDMUTATE(refModel)
population.add(tmpModel)

end while

i=1

for i < generations do
ASSIGNRANKBYMAC (population)
sp < GETSELECTIVEPRESSURE(%)
ASSIGNFITNESSBYRANK (population, sp)
parents < STOCHUNIVERSALSAMPLING(population)
children <— COPYANDMUTATE(parents)
TRAINANDEVAL(children)
minAcc < CALCULATEMINACCURACY(%)
tmpSet < FILTERBYACC(children, minAcc)
tmpSet.add(FILTERB YACC(population, minAcc))
population < GETBEST(tmpSet, n)
1=1+1

end for

> Main EA loop

same architecture is evaluated similarly at different stages of
the algorithm.

In order to initialize the EA a population with n trained
individuals is needed. For this the reference architecture is
taken as the first individual of this initial population. All other
n—1 individuals are created by making a copy of the reference
network and applying a single mutation to it. This can be
thought of a close search around the starting point in the search
space as no individual is further away from the starting point
than one mutation. This seeding of the initial population with a
known good model was also used in [9]. The initial population
is then trained and evaluated on the reference data set. This
results in a test set accuracy for each individual.

The trained and evaluated initial population is the input to
the main loop of the EA. First all individuals in the current
population are assigned a fitness level. For this the individuals
are ranked by their number of MACs where a lower number
of MAC:s results in a better rank. This ranking scheme directs
the search for architectures with lower computational demand
and is a form of eager search. The fitness of each individual is
then determined through linear ranking with selective pressure
[15]. The selective pressure (SP) is linearly increased over the
predetermined number of iterations of the EA in the range
[1.0,2.0]. The lower SP at the beginning of the EA allows
a wider exploration of the search space. Over run time the
SP gets higher and results in a better exploitation of the
individuals in the population. Next a number of individuals are
selected as parents by means of stochastic universal sampling
[16] to ensure that parents with high as well as low fitness
values are selected. The parents are then copied and each
copy is randomly mutated to create a set of children with
new, untrained architectures. These children are then trained

and evaluated. The set of children is then combined with the
current population. Each individual is inserted into a set if it
achieves a minimal test set accuracy. All individuals in the set
are then ranked as described before and the best n selected to
form the new population for the next iteration of the EA. Once
the predetermined number of generations have been evaluated
the EA is stopped.

At this point the EA created, trained and evaluated many
neural network architectures which can now be post-processed
to determine which one is considered to be the most optimized
network or which ones should be taken to form an ensemble.

IV. METHOD DETAILS

This section complements section III with the details nec-
essary to reproduce our experiments.

A. Mutations

All mutations, selections and values are chosen randomly
using a uniform distribution respecting the previously dis-
cussed search space. In general a mutation is chosen (e.g.
change the kernel size of a 2D Convolution layer) which
is then applied to a randomly selected layer (e.g. a 2D
Convolution layer). If there is more then one option for a
parameter value, the new value is randomly chosen from the
set of possible alternatives (see Table I). The exceptions to this
parameter mutations are the insert-layer mutations, which add
a layer of a selected type at a random location to the network,
and the remove-layer mutations, which remove a randomly
selected layer from the network.

A mutation can fail during runtime of the EA in three cases.
Either the resulting architecture has already been created, the
mutation is not applicable (e.g. removing a dropout layer
when no dropout layer exists in the network) or the resulting
architecture violates the search space restrictions (i.e. Wi,qz
or M,,qz). If this happens during runtime another mutation is
tried.

B. Ranking function

The ranking function is a key element of the EA as it
quantifies what is considered a ”good” architecture and thus
allows to compare two architectures and decide which is the
“better” one. The selection process is based on the fitness of
each individual, which encodes its rank. Thus, the ranking
function controls the search goal and navigates the EA through
the big and fairly unrestricted search space.

In this work the initial ranking function resembles an eager
search for networks with lower number of MACs. This means
that networks that have lower computational cost are consid-
ered to be better. To still guarantee a certain performance a
minimal test set accuracy restriction is applied to ensure that
only architectures with reasonable performance can become a
parent in a later generation.

In a second run of the EA the ranking function is replaced
with a scalar field that is based on the number of MACs and the
achieved test set accuracy of an architecture. The scalar field is
a 2D Gaussian function centred at 100% accuracy and 5 - 105

Accuracy [%]

0 20 40 60 80 100 120
of MACs [109]

Fig. 2. Scalar field as ranking function (2D Gaussian)

MACs with sigmas of 10% and 5 - 107 MACs respectively,
see Fig. 2. It is important to note that this specific function is
designed for the GTSRB dataset used in this work (see section
Dataset GTSRB) but can easily be adapted to fit other datasets.

C. Weight inheritance

We don’t use weight inheritance, i.e. no child network is
created from an already trained parent network. The rationale
behind this is that a good architecture for a given problem
should deliver comparable results each time it is trained from
scratch.

V. EXPERIMENTAL SETUP
A. Dataset GTSRB

The GTSRB dataset [14] consists of a training set with
39’209 real world images depicting 43 different classes of
traffic signs and a test set of 12’630 images. We use the whole
training set to train a network and evaluate the performance
of it with the test set. As the images in the training set vary
in size from 15x15 to 250x250 pixels, all images were resized
to 48x48 pixels as in [17]. During training we use image
augmentation where the images are rotated by £5°, shifted by
+10% and zoomed by £10%. This is the same augmentation
used during training in [17].

B. Reference Architecture

The reference architecture acts as a starting point for the
optimization process. It is represented by the first individual
in the initial population and altered with the help of mutations
to create the other individuals in the initial population. The
winner of the GTSRB challenge [14] was a multi-column deep
neural network called MCDNN developed by IDSIA [17]. This
MCDNN comprises 25 deep neural networks (DNN) which all
have the same architecture. For the classification of an image
each DNN calculates their respective output activations which
are then averaged together to get the final classification. The
achieved accuracy and computational complexity can be seen
in the top part of Table II. In our work we use the architecture
of the single DNN as the reference architecture to start the EA

with. It consists of three convolutional layers with subsequent
max-pooling and two fully-connected layers. The difference
in the test set accuracy of the DNN from [17] and our work
is due to the different batch size of 32 we use in our work.
When we retrained the DNN architecture with batch size 1 we
could reproduce the test set accuracy (98.42%).

C. Training Details and Hyperparameters

We train each network with the Adam optimizer [18] with a
batch size of 32 and an initial leaning rate of 0.0001 for a max-
imum of 30 epochs. To further improve training performance
we use automatic learning rate reduction with a minimum delta
of 1% over 5 epochs after which a reduction by a factor of 0.1
is performed. To further reduce the computational load we use
early stopping with a minimum delta of 0.5% over 10 epochs.

D. Hardware

A single computer equipped with 32GB of RAM, an i7-
8700 CPU and a NVIDIA GeForce RTX 2080 Ti was used
to run the experiments. This resulted in a total runtime of the
algorithm of around 9 days for the 1350 architectures that
were generated and trained. The wast majority of this time
was taken by the training of these architectures. Our low-cost
setup and low number of trained architectures compares to
other recent EAS used on tasks like CIFAR-10 as follows:

« In [8] each experiment ran on 450 Nvidia K40 GPUs and
evaluated 20k models in approximately 7 days.

e In [9] they used 270 workers, each equipped with a
Google TPU V.2 chip, to train and evaluate 15k models.

e In [4] they used a recurrent neural network (RNN) to
generate architectures and utilized 800 Nvidia K40 GPUs
for 28 days [3].

o In [3] they used the RNN from [4] in a different setting
and used 500 Nvidia P100 GPUs across 4 days.

o A sequential architecture design approach presented in
[1] took 8-10 days with a setup of 10 Nvidia GPUs.

« Finally a most recently introduced algorithm [5] to design
only the cells for a cell-based network took up to 12 days
on a single Nvidia Titan Xp GPU.

E. Search Configuration

The EA was run for 50 iterations with a population size
of n = 50. In each iteration 13 individuals were selected
as parents and from each parent two children were created.
This results in a total of 1350 architectures (50 + 50*13*2).
Mae = 125'978'700 and W0 = 1543'443 as these are
the parameters of the reference architecture from [17] (see
Tab. II). The minimal test set accuracy is 92% at the start
of the algorithm, then increases raised by 1% after every 10
iterations of the EA.

VI. RESULTS

We used the previously described EA to optimize the
architecture of the DNN from [17] on the GTSRB dataset
[14] twice. The 1% run uses an eager search for networks with
a lower number of MACs and the 2" run a 2D Gaussian

TABLE II
RESULTS OF EAS AND EVALUATION

Top-1 Acc [%] # MACs | # Parameters
Network EAS? | Retraining” | 10-fold cross-val® [109] [106]
IDSIA DNN [17] n.a. 98.47 +0.18 n.a. 126.0 1.54
IDSIA DNN¢ 95.92 96.18 + 0.35 99.89 + 0.05 ’ '
IDSIA MCDNN [17]¢ n.a. 99.46 n.a. 3°149.5 38.59
1% run - eager search (Ranking function: lower # of MACs)
ID-521 98.73 98.33 +0.08 99.94 + 0.04 473 0.80
ID-566 98.64 98.32 + 0.21 99.92 + 0.04 15.3 1.12
1D-622 98.29 97.92 + 0.09 99.87 + 0.07 19.7 0.75
1D-471 98.07 98.02 + 0.35 99.91 + 0.05 15.1 0.93
ID-831 98.02 97.27 + 0.33 99.90 + 0.08 5.8 0.66
ID-722 97.95 97.46 + 0.39 99.87 + 0.05 5.9 0.70
ID-909 97.89 97.68 + 0.36 99.90 + 0.05 5.6 0.18
ID-1073 97.85 97.44 + 0.17 99.75 + 0.08 4.8 0.54
Ensemble 1 (831 + 722 + 909) n.a. 98.86 n.a. 17.3 1.54
Ensemble 2 (566 + 471) n.a. 98.95 n.a. 30.4 2.04
Ensemble 3 (521 + 566 + 622) n.a. 99.18 n.a. 82.4 2.66
27 ryn - scalar field (Ranking function: 2D Gaussian function, see Figure 2)
ID-1072 98.60 98.09 + 0.15 99.85 + 0.09 11.5 1.11
ID-1162 98.57 98.03 +0.12 99.82 + 0.06 10.9 0.17
ID-916 98.54 97.76 + 0.13 99.88 + 0.06 11.3 0.90
ID-1157 98.53 98.12 + 0.06 99.80 + 0.12 11.3 0.55
ID-837 98.46 97.85 +0.16 99.87 + 0.06 11.4 0.67
ID-786 98.45 98.18 + 0.07 99.77 + 0.06 11.3 0.60
ID-1021 98.16 97.85 + 0.03 99.81 + 0.09 8.8 0.54
1D-939 98.15 97.47 +0.24 99.76 + 0.08 9.0 0.76
ID-1343 98.09 97.79 + 0.12 99.87 + 0.05 74 0.72
Ensemble 1 (1072 + 1162) n.a. 99.15 n.a. 22.4 1.28
Ensemble 2 (1072 + 1162 + 916) n.a. 99.28 n.a. 33.8 2.19
Ensemble 3 (1072 + 1162 + 916 + 1157) n.a. 99.35 n.a. 45.0 2.74
@Reached Top-1 accuracy during evolutionary architecture search
bThe architecture was retrained three times
“The architecture was cross-validated three times and the best result took as the metric
d Architecture retrained in EAS environment during 1 run
°Ensemble of 25 DNN, each trained with differently preprocessed data
; ; 99~ .
function to take into account both, the number of MACs Reference acouracy . MicronNet oo
and the accuracy of a network. The results of both runs o5, DSADNN . (Reference) " =
. T .. 1073 909 831 .
were examined and a few individuals selected as winning o NN S 792 (":'gr’;"r‘]’:g; 471,
— r N - !
networks of the run. Ensembles were formed based on those & -
trained individuals, with simple averaging of the individual 975"
probabilities of the neural networks, as in MCDNN from [17]. 3 o,
©
All winning network architectures were retrained three 7§ w65l
times to get a more consistent estimate of their performance. 3
Further 10-fold cross-validation has been performed with each %
architecture to check that no indirect overfitting occurred dur- 95.5
ing the EA. The retraining resulted in slightly lower accuracies o ‘ ‘ ‘ ‘ ‘ |
for all winning networks as shown in Table II. This is because 0 2 4 6 8 10 12 14 16

their selection is biased towards networks that happened to get
optimally trained during EAS. Retraining of lower-performing
networks did not show this effect.

The results from the 1% run show that our algorithm can
find smaller networks without significant accuracy reduction.
For instance, the network ID-909 has a reduction of the
retrained accuracy of around 0.8% compared to the reference
network, but reduced the number of MACs by a factor of
22.4 and the parameter count by a factor of 8.4. Furthermore,
small ensembles can be formed which surpass the accuracy of
the reference network while exhibiting a lower MAC count,
but have the drawback of an often higher parameter count.
Ensemble 1 for example increased the accuracy by around

of MACs [10%]

Fig. 3. Point cloud of CNN created during 1% run with a test set accuracy
of > 95% and M < 16 - 10°

0.4% with a 7x reduction in MACs and approximately equal
parameter count. A point cloud depicting the best networks
created during this run can be seen in Figure 3.

The results from the 2" run show even better characteristics
which confirms that the optimization goal can be controlled
through dedicated ranking functions. Network ID-786 has the
best accuracy after retraining of this run (98.18%) with an
accuracy reduction of around 0.3% compared to the reference
network, although it reached the same accuracy during the

TABLE III
ASSESSMENT OF MICRONNET ARCHITECTURE FROM [2] IN EAS
ENVIRONMENT

Top-1-Acc [2] 98.9%
Top-1-Acc? 95.69% =+ 0.95%
10-fold-cross-validation® 99.76% £ 0.19%
of MACs 10°543°028

Parameters 514’979

2The architecture was retrained three times
bThe architecture was cross-validated three times and the best result
took as the metric

EAS (98.45%). It exhibits a 11.1x reduction in the number
of MACs and a 2.5x reduction in the parameter count. The
Ensemble 1, built out of two networks, even surpasses the
accuracy of the reference network by around 0.7% with a
reduction of 5.6 in MACs and only 83% of the original pa-
rameter count. In fact, Ensemble 3 built out of four networks,
rivals the much bigger MCDNN from [17], with a 0.1% lower
accuracy but with a 70x reduction of MACs and 14x less
parameters.

These results can be compared to a current state-of-the-art
architecture called MicronNet [2] which was as well optimized
for the GTSRB dataset. [2] doesn’t use an evolutionary search
strategy, but is based on macro-architecture design principles
and numerical micro-architecture optimization strategies. The
MicronNet architecture has been retrained and assessed in our
EAS training environment to allow for a fair comparision. The
characteristics and the results from the retraining process can
be seen in Table III.

Despite significant effort the stated test set accuracy from
[2] of 98.9% could not be reproduced. Different batch-sizes,
learning rates and optimizer have been tested, including the
ones mentioned in [2], but the best accuracy achieved was
97.91% in one out of 15 runs with a batch-size of 32,
automatic learning rate reduction and the Adam optimizer. It is
assumed that the accuracy of 98.9% reported in [2] is not based
on the network architecture of MicronNet alone but stronger
use of data augmentation during training than in [17] or in
our work. When the reported accuracy of 98.9% is compared
to the results of the two EAS runs, it outperforms every
single network. The closest match to it would be Ensemble
1 from the 1*' run which has an equal accuracy but twice the
MAC s and three times the parameter count. On the other hand,
when the best accuracy achieved with MicronNet within our
training environment is taken as reference, it is outperformed
by network ID-909 from the 1% run.

VII. CONCLUSIONS

This work used a generational EA to optimize a neural
network architecture on the GTSRB dataset. We created an
ensemble (Ensemble 3 from the 2nd run) which competes the
much bigger MCDNN from [17], with a 0.1% lower test set
accuracy but a 70-fold reduction of MACs and 14-fold fewer
parameters. Furthermore, we created an ensemble (Ensemble
1 from the 1st run) which shows that it is possible to build
ensembles from the network created during the EAS, which
outperform the initial reference network while exhibiting lower

MAC:s and parameter count. Additionally, many good perform-
ing network models were generated which provide the user
with a variety of architectures as a starting point for further
manual optimization (see Figure 3). We run this EAS on a
single GPU-workstation to show that EAS can be used with
modest computational resources and still achieve good results
within days. The architecture search of our algorithm can be
guided through dedicated ranking functions to meet different
optimization goals. We only used common layer types and no
weight pruning to show that the architecture itself is optimized
and to assert that resulting architectures can be implemented
with current ML acceleration chips in edge devices.

Future work will include the test of the proposed EA on
other data sets like CURE-TSR or CIFAR-10.

REFERENCES

[1] B. Baker, O. Gupta, N. Naik and R. Raskar. Designing Neural Network
Architectures using Reinforcement Learning. CoRR, abs/1611.02167,
2016.

[2] A.Wong, M.J. Shafiee and M.St. Jules. Micronnet: A highly compact
deep convolutional neural network architecture for real-time embedded
traffic sign classification. In IEEE Access, vol. 6, pp. 59803-59810, 2018.

[3] B. Zoph, V. Vasudevan, J. Shlens and Q.V. Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018.

[4] B. Zoph and Q.V. Le. Neural Architecture Search with Reinforcement
Learning. In International Conference on Learning Representations
(ICLR), 2017.

[5] S. Xie, H. Zheng, C. Liu and L. Lin. SNAS: Stochastic neural architec-
ture search. In International Conference on Learning Representations
(ICLR), 2019.

[6] H. Pham, M. Guan, B. Zoph, Q. Le and J. Dean. Efficient neural
architecture search via parameters sharing. In Proceedings of the 35th
International Conference on Machine Learning, Vol. 80, pp. 4095-4104,
2018.

[71 E. Real, S. Moore, A. Selle et al. Large-scale evolution of image
classifiers. In International Conference on Machine Learning, 2017.

[8] E. Real, A. Aggarawal, Y. Huang and Q.V. Le. Regularized evolution
for image classifier architecture search. In International Conference on
Learning Representations, 2018.

[91 D.R. So, C. Liang and Q.V. Le. The evolved transformer. CoRR,
abs/1901.11117, 2019.

[10] M. Wistuba. Practical deep learning architecture optimization. In /IEEE
International Conference on Data Science and Advanced Analytics,
2018.

[11] L. Xie and A. Yuille. Genetic CNN. In IEEE International Conference
on Computer Vision, 2017.

[12] V. Sze, Y. Chen, T. Yang and J. S. Emer. Efficient Processing of Deep
Neural Networks: A Tutorial and Survey. In Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295-2329, Dec. 2017.

[13] A. G. Howard et al. MobileNets: Efficient convolutional neural networks
for mobile vision applications. CoRR, abs/1704.04861, 2017.

[14] J. Stallkamp, M. Schlipsing, J. Salmen and C. Igel. The German Traffic
Sign Recognition Benchmark: A multi-class classification competition.
In Proceedings of the IEEE International Joint Conference on Neural
Networks, pages 1453-1460, 2011.

[15] T. Back. Selective pressure in evolutionary algorithms: a characterization
of selection mechanisms. In Proceedings of the First IEEE Conference
on Evolutionary Computation, 1994.

[16] J.E. Baker. Reducing bias and inefficiency in the selection algorithm.
In Proceedings of the 2nd Annual Conference on Genetic Algorithms,
Massachusetts Institute of Technology, Cambridge, pp. 14-21, 1985.

[17] D. Ciresan, U. Meier, J. Masci and J. Schmidhuber. Multi-column deep
neural network for traffic sign classification. In Neural Networks, vol.
32, pp. 333-338, 2012.

[18] D.P. Kingma and J.L. Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2015.

