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Abstract—Interference and noise mitigation is a critical com-
ponent of many broadband communication systems. However,
interference is often nonstationary, heavily dependent on the
environment, and statistical a priori knowledge is not generally
available. We propose a restricted Boltzmann machine (RBM)
for unsupervised learning of time/frequency interference patterns
in orthogonal frequency-division multiplexing (OFDM) receivers.
Capable of learning patterns without statistical a priori knowl-
edge, an RBM can be combined with a factor graph underlying
a turbo or low-density parity-check decoder. We demonstrate
the benefits of the proposed approach using the example of
turbo encoded OFDM signal frames exposed to different forms
of interference.

Index Terms—interference mitigation, machine learning, re-
stricted Boltzmann machine, turbo coding

I. INTRODUCTION

Intense interference affects the reliability of many com-
munications systems. Possible sources of interference are
third party communications equipment operating in the same
frequency band, but also a wide range of electromagnetic
wave emitting devices such as home appliances, ignition
systems, and switching processes in the power distribution
network [1]. Cognitive radios have been proposed and shown
to evade narrowband interference to a certain extent, but the
nonstationary and highly random nature of impulsive noise
may make the establishment of reliable data transmission a
challenge.

In the following we use the term interference indistinctly
for all sorts of interference and noise with statistical properties
varying over time or frequency, including narrowband inter-
ference and impulsive noise. An example of an environment
with heavy interference are high-voltage power substations [2],
[3]. The harsh conditions there, mainly due to arc discharges,
are difficult to overcome by wireless communications systems.
Similar conditions are found in power line communications
systems (PLC), where interference originates from switching
processes of electrical devices [4]. Detailed descriptions of
impulsive noise models and parameters for PLC and wireless
communications are given in [S] and [6], respectively.

Many standards for broadband communications build on
orthogonal frequency-division multiplexing (OFDM) as mod-
ulation scheme, such as digital audio broadcasting, digital
video broadcasting, 3GPP long term evolution (LTE), broad-
band over power line, among others. Besides of evading a
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need for complex equalizers, OFDM has the advantage of
confining interference to a subset of time/frequency slots (i.e.,
OFDM symbols/subcarriers). In combination with a channel
interleaver and an efficient forward error correction (e.g. a
low-density parity-check (LDPC) or turbo code), OFDM can
cope relatively well with moderate interference. However, for
dealing with frequently occurring bursts of interference or
high interference power, additional mitigation techniques are
required [7], [8].

Concerning impulsive noise mitigation, one technique is
to do either clipping or blanking (i.e., nulling) of affected
signal sections in the time domain [9]-[11]. The popularity of
this simple approach is due to a favorable trade-off between
computational complexity and achievable performance. By
clipping or blanking signal sections with amplitudes above a
predefined threshold, known as blanking threshold, impulsive
noise peaks are eliminated. However, at the same time the
information-bearing OFDM signal is affected, which is a
significant drawback of these techniques [9]. Also, due to
the inherently high peak-to-average power ratio, distinguishing
between OFDM signal peaks and noisy impulses represents a
challenging task [10].

Other approaches pursue to estimate the interference given
its sparsity, either in the time domain or in frequency, to
subsequently cancel it from the received signal [12], [13].
Sparse Bayesian learning, among other compressed sensing
(CS) techniques, has been used for this purpose [14]-[16]. CS
takes advantage of information carried on null and pilot tones
to estimate impulsive noise. However, this implies a reduced
bandwidth efficiency and throughput. In addition, CS methods
involve a matrix inversion which may become rather complex
for OFDM symbols with a large number of subcarriers.

Combining interference mitigation with LDPC and turbo
decoding has been proposed in a few works. In [17] the factor
graph used for decoding is extended to incorporate channel
gain and noise power estimation, whereas in [18] a particle
filter is proposed to account for varying noise power.

In this work we likewise build on factor graphs used for
signal decoding, however, we employ a restricted Boltzmann
machine (RBM) for assessing the characteristics of the in-
terference. As a method from machine learning, there is
no requirement for statistical a priori knowledge about the
interference, as opposed to Bayesian approaches to interfer-



ence mitigation. Whether the interference exhibits narrowband
characteristics, from nearby signal transmitters, or intermittent
forms, possibly originating from electric devices, the RBM
tackles the challenge in the same unbiased manner. This is
a significant advantage for the many wireless communica-
tion systems encountering varying sorts of interference from
environment to environment. To our knowledge, employing
unsupervised learning for interference pattern learning and
mitigation in OFDM receivers has not yet been studied.

The structure of this work is as follow. Sect. I gives a
brief introduction to RBMs. In Sect. III the system model
is introduced and the factor graph, extended by the RBM,
described. An evaluation of our proposal by means of Monte-
Carlo simulations follows in Section IV. Finally, conclusions
are drawn in Section V.

II. RESTRICTED BOLTZMANN MACHINE

A RBM is a two-layer artificial neural network (ANN),
capable of learning patterns in an unsupervised training proce-
dure. A layer of visible units is connected to a layer composed
of hidden units. In our setup, the states of the visible units
represent the variances o, ...,0% of the noise terms in the
signal observation as explained in Sect. III, and they are real

positive, i.e., o7 € (0,00). The M hidden states hq,. .., hy,
on the other hand, are binary: h; € {0,1}.
Every combination of visible states v = (0%,...,0%)T

and hidden states h = (hq,..
through [20]

.y har)T is assigned an energy

E(v,h)=—(a’v+Db"h+v'Wh). (1)

The (K x M)-matrix W in (1) contains the weights, a and
b are bias (column) vectors of size K and M, respectively,
and T in the superscript denotes transposition. In the course
of the network training, W, a and b are adjusted such that
the energy, also sometimes referred to as the cost, decreases.
The energy function is used to define the joint probability

fv.h) = exp (~E(v, b)), @
where Z is a normalizing constant ensuring that the probabil-
ities of all possible combinations of visible and hidden states
sum up to 1.

As a central feature of RBMs, the hidden states hq,...,hys
are conditionally independent given the visible states. As
follows from (2), the conditional probability of {h; = 1} given
v is
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where b; denotes the jth element of b and wy; the jth
element in the kth row of W. Similarly, the visible states
0%,...,0% are conditionally independent given the hidden
states. As follows from (2), the conditional probability density

of o7 given h has the form of the density of an exponential
distribution with rate parameter

M
A=—ap— Y hjwy; 4)
j=1

and mean A\~ 1.

The mutual conditional independence facilitates the training
procedure. As shown in [19], the learning rule can be derived
from the method of steepest descent. Given observed visible
states Vqata With a sampled vector of hidden states hgata,
along with a “typical” combination (Viodel, Bimoder) Of visible
and hidden states, the weight matrix is updated according to

AW =e- (Vdatathata - Vmodelh;l;lodel) &)

with e representing the learning rate. The bias vectors are
updated in a similar fashion, that is, Aa = € (Vdata — Vimodel )
and Ab =e¢- (hdata - hmode1)~

The combination (Viodel, Mmodel), representing the cur-
rent model, is obtained from (Vgata, ndata) through Gibbs
sampling. This involves a number of alternating rounds of
sampling the hidden states on the basis of the visible states
and vice versa, according to the probability distributions given
by (3) and (4), respectively. For more insight into RBMs we
refer to [20].

III. SYSTEM MODEL

A transmitted signal frame is assumed to convey /N infor-
mation bits, encoded and modulated onto a complex baseband
signal vector s = (s7 ..., sk ). For forward error correction we
assume a turbo code, incorporating two constituent encoders
and an interleaver. The well-established iterative turbo decod-
ing procedure building on belief propagation — and the sum-
product algorithm — can be derived from a factor graph [21],
composed of so-called variable nodes and factor nodes (see
Fig. 1). The graph can be deduced from the factorized joint
probability of the transmitted bits [i p q], the noise power v,
the signal observarion r, and a hidden state vector h:

f(ipdal,r,v,h)=f(i) - f(p|i)- fla]i)
X f(v,h)
xf(r|[ipd],v). (6)

o The vector i contains the N information bits.

o The vectors p and q contain the parity bits introduced
by the two constituent encoders of the turbo code.

o The composite vector [i p q] comprises the transmitted
bits.

o The vector r = (r1,...,7x) contains the K signals in
the frame as observed at the receiver end.

o Each observed signal r, is subject to a random noise term
with variance o7.

The above factors have the following forms:

o The N bits are assumed independent and f(i) = 277,
o The parity bits are deterministically dependent on i and

thus f(p | i) € {0,1} and f(q | i) € {0,1}.
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Fig. 1. Factor graph augmented by a RBM: the variable nodes are shown as
circles and the factor nodes in rectangular form.

o The varying noise power is dependent on the hidden states
through f(v,h) as described in Sect. II.

o The additive noise terms contained in the observed sig-
nals are independent and complex Gaussian distributed.
Hence,

k
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where the mapping [i p q] — (s1...
the applied modulation method.

, Sk ) depends on

The decoding proceeds by passing messages among the vari-
able and factor nodes of the factor graph. The messages have
the form of likelihood ratios conveying extrinsic information
from the various decoding rounds.

As for the RBM augmenting the factor graph, the bit like-
lihood ratios need to be translated into noise power values for
the visible units. For each signal we compute the probabilities
Pr{sy = p;} of the I possible noise-free signals (i;)i=1,... 1,
and use these probabilities for estimating the noise power
according to

I
Gr = Pr{si =i} |rn — > (8)

i=1

The step is simple for binary modulated signals (where I = 2)
and more complex in the case of higher-order modulation.
The more accurate the bit likelihood values become, the more
accurate the noise power estimates.

In downward direction, the noise power estimates are used
to update the likelihood ratios of the elements in [i p q] on
the basis of (7).

The order in which messages are passed along the factor
graph including the RBM can be chosen arbitrarily. However,
letting messages propagate from the two bottom factor nodes
upwards and through the RBM, then back downwards, and
repeating this procedure a certain number of times seems a
natural choice. Convergence towards the optimal solution, i.e.,
maximizing the a posteriori bit probabilities, is not guaranteed,
but often near optimal results are obtained by the sum-product
algorithm.

IV. NUMERICAL RESULTS

The performance of the proposed interference power esti-
mation has been investigated using Monte-Carlo simulations.
As an example of a state-of-the-art coded OFDM scheme,
turbo encoded binary modulated signals are mapped onto 320
subcarriers over 26 consecutive OFDM symbols. The 26x320
bits are obtained from a turbo encoder similar to the rate %
encoder specified in the IEEE 1901 standard for PLC [22].
Employing two parallel systematic convolutional encoders of
rate % and a turbo interleaver, 4160 information bits are
encoded into codewords of length 8320. Tail biting is used
for termination.

As we are interested in the impact of interference, a channel
with a flat magnitude response is assumed. After discrete
Fourier transform, the receiver employs an iterative turbo
decoding procedure on the basis of the factor graph in Fig. 1.
Each iteration involves an update of the bit likelihood values as
per the first constituent encoder, an update of the bit likelihood
values as per the second encoder, and an update of the noise
power estimates. For the latter step, the time/frequency plane
is subdivided into partitions of size 13 x 20, i.e., 20 adjacent
subcarriers over 13 OFDM symbols. In each partition, the
observed noise values are squared and taken to define the
visible states in the vector v. The M = 50 hidden states in h
are then generated according to (3), and from these the noise
power estimates are computed according to (4).

The RBM can be trained during burst receptions by carrying
out additional updates of the hidden states and visible units
(i.e., Gibbs sampling), or while listening to the idle channel as
we did. We carried out a large number of RBM training steps,
each involving 10 updates of the hidden states and visible
units before adjusting the weights. The results presented in
the following are obtained after training of the RBM.

In the first scenario, artificially generated noise patterns are
used as shown in Fig. 2 (above). In each partition, one half of
the 260 time/frequency slots are subject to Gaussian distributed
noise with variance o3 and the other half to variance o,
where o /o = 10. One of the 10 noise pattern is randomly
chosen for each partition. The average bit error rate (BER)
after different numbers of iterations is shown in Fig. 3 versus
the signal-to-noise power ratio (SNR), defined as the ratio of
the bit energy e}, and the noise variance averaged over the
time/frequency slots.

As expected, the BERs decay with the number of iterations
of the turbo decoder. Including noise power estimation (NPE)
through the described RBM clearly improves receiver perfor-
mance. As the first NPE runs just after the first iteration, the
benefits become visible after the second iteration, ending up
with a gain of approx. 1.5 dB after 10 iterations compared to
a decoder relying on a single average noise power estimate.

In the second scenario we assume an intermittent nar-
rowband interferer, partially overlapping the received signal.
Some of the random interference patterns are shown in Fig. 2
(below). The interferer has a power spectral density of 20 dB
above the additive white Gaussian noise power density. With-



Fig. 2. Noise power patterns of size 13 x 20. White colored time/frequency
slots are subject to intense noise power and black colored slots are subject
to weak noise. Above: artificially generated patterns with 10 dB difference in
noise power. Below: patterns resulting from narrowband interference partially
overlapping in time.
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Fig. 3. Randomly generated noise power patterns: decoder performance

including trained RBM for NPE, and without NPE (assuming uniform noise
power).

out NPE, the large impulsive interference terms in a small
subset of input values throw the bit likelihood computations
by sum-product algorithm off the track. The RBM, after proper
training, recognizes the interference patterns and facilitates an
improvement from iteration to iteration, as seen in Fig. 4.
Through NPE the decoder assesses the information content
in the input values, achieving BERs in the order of 1076 after
five iterations at an average interference-plus-noise power level
just below the signal power.

V. DISCUSSION

In many environments, broadband wireless communication
systems are exposed to nonstationary interference, sometimes
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Fig. 4. Intermittent narrowband interferer: decoder performance including

trained RBM for NPE, and without NPE (assuming uniform noise power).

from analog electrical devices, and in other situations from
third party communications equipment. The characteristics of
the interference may change completely from one environment
to another environment. Neural networks in the form of RBMs
are capable of building up a knowledge of the interference
patterns encountered in a certain environment. After training, a
receiver can use the RBM to identify a particular interference
pattern and in the same time properly weight the observed
signals. As a method from machine learning, RBMs do not
require a priori information, making them superior to many
other noise estimation approaches building on Bayesian statis-
tics.

We have demonstrated the benefits of RBMs for dealing
with certain forms of interference, improving receiver perfor-
mance by several decibels. There are in fact many ways in
which ANN can be applied for interference pattern recognition
in OFDM receivers. Further research studying the benefits of
other forms of ANN seems worthwhile, such as convolutional
neural networks, or also some forms of recurrent neural
networks.
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