
FPGA Implementation of a Multi-Channel
Continuous-Throughput FFT Processor

Elia Fankhauser
Intelligent Sensors and Networks Laboratory (ISN)

Lucerne University of Applied Sciences and Arts (HSLU)
Lucerne, Switzerland

elia.fankhauser@hslu.ch

Jürgen Wassner
Intelligent Sensors and Networks Laboratory (ISN)

Lucerne University of Applied Sciences and Arts (HSLU)
Lucerne, Switzerland

juergen.wassner@hslu.ch

Abstract—The Fast Fourier Transform (FFT) is at the heart
of many signal processing systems, e.g. those using orthogonal
frequency-division multiplexing (OFDM) modulation. For such
systems the FFT is typically implemented on dedicated hardware,
e.g. field-programmable gate arrays (FPGAs), to meet the high
throughput and latency requirements. This paper describes a 2-
parallel radix-2 FFT core embedded into an overall processing ar-
chitecture that allows data interfaces to be tailored to application-
specific needs. The proposed solution can dynamically switch
between different FFT sizes while maintaining its maximum
theoretical throughput. Our experiments show that a two-fold
increase in throughput can be achieved without doubling resource
usage, when taking into account FPGA-specific features for
several optimizations.

Index Terms—FFT, FPGA, Throughput, Butterfly

I. INTRODUCTION

The discrete Fourier transform (DFT) is a core component
of wireless and wire-based broadband digital communication
systems that use orthogonal frequency-division multiplexing
(OFDM) modulation, e.g. mobile radios (LTE), digital tele-
vision (DTV), and power-line communication (PLC). Due
to the increasing throughput requirements of such systems,
an efficient hardware implementation of the one-dimensional
DFT

X[k] =

N−1∑
n=0

x[n]e−j2πn
k
N , k = 0, 1, . . . , N − 1 (1)

is of ongoing interest.
Existing work in this domain can be broadly divided into

approaches based on systolic arrays [1] and those using
variants of the fast Fourier transform (FFT) algorithm [2] [3].

In the former category mainly two-dimensional (2-D) sys-
tolic array architectures are of interest, because only those
can be utilized to reduce the computational complexity of (1)
from O(N2) to O(N(N1 + N2)) by factoring N = N1N2.
According to the results in [1], such 2-D systolic arrays
achieve high throughput with comparable hardware cost up
to N = 2048, but do not scale well for larger DFT sizes, such
as those required by our target application, see section II-A.
This non-linear scaling of 2-D systolic arrays is evaded by
the divide-and-conquer approach of the FFT, which reduces
the computational complexity to O(N log2(N)). Since the

constraint on N to be a power of two is feasible for our
application, we focus on FFT algorithms.

In the context of OFDM, several architectures for a
pipelined FFT processor have been proposed already in [4], but
none of them meets the throughput requirements of modern
systems. Most of the existing work on FFT implementation
targets certain efficiency metrics but neglects application data
input and output interfaces. Our work deliberately includes
such interfaces into the design.

A low-complexity FFT processor was suggested in [5]
to reduce power consumption at the cost of higher latency.
The control scheme suggested with this processor infers stall
cycles when dynamically changing the FFT length, which is
detrimental to latency and throughput. Radix-2k architectures
for fixed-length FFT were studied in [6]. Such architectures
provide very good throughput but result in high hardware
costs, which might not be suitable for FPGA implementation.
The same is true for the highly-parallel architecture suggested
in [7]. A real-time reconfigurable processor was proposed in
[8], which only covers FFTs with log2(N) mod 2 = 0 because
of its radix-4 architecture.

With respect to digital noise produced by scaling and
rounding, the present paper builds on [9], which studied the
effect of a decimation-in-time (DIT) vs. a decimation-in-
frequency (DIF) decomposition. The authors of [9] conclude
that with optimal rounding, DIF produces less noise than
DIT, and that DIF results in less noise for frequency indexes
N/2 ≤ k ≤ N − 1, while DIT features a noise spectrum
symmetrical around k = N/2− 1.

This paper describes a multi-channel FFT processor that
optimally utilizes time-shared FPGA resources. With regard
to previously proposed FFT architectures our work is closest
to [7] and [8], but provides the following new contributions:

1) A multi-channel FFT processor that can be tailored to
application-specific interface requirements.

2) A decentralized control scheme for radix-2 FFTs that
supports dynamically changing N without stall cycles.

3) An implementation of butterfly operations optimized for
FPGA-specific hardware resources.

4) A method for efficient twiddle factor storage with on-the-
fly resolution enhancement.

Fig. 1. Architecture of the FFT processor. Input data is buffered per channel and forwarded under priority control to the corresponding input of the general-
purpose FFT core. Result data is multiplexed to the corresponding channel. Optional output buffers are used for data reordering and sample rate adaptation.

The remainder of the text is organized as follows. In sec-
tion II the overall architecture of the FFT processor is derived
from the target application. The generic FFT core is then
explained top-down in section III, providing details on several
optimizations that have been performed. These optimizations
are experimentally evaluated with respect to latency, digital
noise and hardware cost in section IV and conclusions are
drawn in section V.

II. APPLICATION-SPECIFIC FFT PROCESSOR

A. Target Application and Problem Statement
[11] specifies two types of OFDM physical layer proce-

dures for broadband communication over power line networks
in smart grid, transportation and in-home applications. In
situations where strict requirements regarding electro-magnetic
emissions must be met, the FFT-based physical layer is pre-
ferred over wavelet OFDM since it allows the realization of
deep frequency notches without additional transmit filters.

The FFT physical layer version of [11] requires three FFT
instances: A combined 4096/512-point inverse FFT (IFFT)
for generation of modulated transmit symbols and preamble
mini-symbols, and two separate 4096- and 512-point FFTs for
receive symbol demodulation. All of these are working with
the baseband PLC signal. For the specific low-latency FPGA
implementation of [11] we used four different instances of
the commercially available FFT core [12] with a target clock
frequency of 400 MHz. This core serves as a reference point
in the remainder of this text. From the protocol point of view,
all four FFT instances could time-share the same hardware
in our target system as they are guaranteed to not be used at
the same time during all stages of transmission and reception.
However, since the processing pipeline of [12] must be flushed
every time the FFT length N is changed, throughput drops
and latency increases beyond our system requirements. We
therefore opted for a solution that optimally utilizes hardware
resources time-shared between FFT channels.

Although our starting point was PLC as defined in [11], the
proposed solution is applicable to any system that requires
multiple FFTs or IFFTs of equal or different length N to be
performed with low latency on various data streams in a time-
multiplexed fashion.

B. FFT Processor Architecture

Fig. 1 shows the top-level architecture of the proposed
solution, which consists of a general-purpose FFT core and
the surrounding FFT processor infrastructure.

The FFT processor functionality can be statically configured
for the targeted application. For our particular OFDM system
we used four channels, but the general concept has no such
limitation. Each of the channels can be statically configured to
any FFT length N supported by the FFT core. This approach
assumes that the different FFT lengths required are known a
priori, but maintains the maximum FFT core throughput when
changing processing from one FFT length to another. This is
conceptually different to [12], where the FFT length can be
dynamically changed, but any such change incurs stall cycles
and a drop in throughput.

As indicated in Fig. 1, the selected FFT core architecture
supports a continuous throughput of two complex-valued sam-
ples per clock cycle, which is twice the theoretical throughput
of the reference core [12]. The choice of a two-parallel FFT
core architecture resulted from a trade-off analysis, which
revealed that the linearly increasing hardware cost of higher
FFT parallelization is not justified in our OFDM application,
because system-level latency would only marginally decrease.
Although the particular FFT architecture has been selected
based on the requirements of our target application, the FFT
core can be reused in other applications, either stand-alone
(for single-channel applications) or by making use of the
FFT processor infrastructure (for multi- and single-channel
applications).

The FFT processor employs input buffers to ensure that
once the FFT core has started to process a particular channel,
two complex-valued input samples per clock cycle from this
channel can be provided to the core. With this method the
processing of each channel can be started at the optimal
moment in time. This optimal time is the moment when the
minimum fill level of the input buffer required for continuous
core throughput, independent of the data rate of the specific
channel, is reached. The arbitration between channels with
different N is handled by the de-centralized control scheme
explained in section III-B.

Fig. 2. Comparison of the 2-parallel R2MDC (top) and the proposed R2MDC-2i (bottom) architecture for N = 16. Moving criss-cross elements C2 to
the preceding stage prepares for the localized control concept required for continuous throughput. The dummy element C2 added to the last stage does not
consume any hardware resources.

When two or more channels are configured for the same
FFT length, a dedicated input buffer for each channel is used.
These channels are then arbitrated to the same core input.
Assuming that the channel input sample rate is high enough,
the FFT processor architecture ensures that the maximum
theoretical throughput can be maintained at the FFT core
output at all times.

Output buffers can be optionally instantiated per channel
and used for reordering the bit-reversed FFT core output and/or
sample rate adaptation. A channel-specific ID is propagated
through the FFT core to allow proper multiplexing at the
output buffers.

III. GENERAL-PURPOSE FFT CORE

A. Pipelined FFT Core Architecture

Starting off from the 8-parallel radix-2 multi-path delay
commutator (R2MDC) architecture proposed in [7], two mod-
ifications were introduced, which allow the target throughput
of two samples per clock cycle to be maintained even when
changing the FFT length N . First, the 8-parallel R2MDC
architecture from [7] has been scaled down to the 2-parallel
architecture shown in Fig. 2 (top), which realizes the target
throughput. However, its irregular structure across the log2(N)
stages excludes a generic localized control concept for each
stage required to maintain maximum throughput as explained
in section III-B. Second, by moving each criss-cross commu-
tator C2 into the preceding stage as shown in Fig. 2 (bottom),
such a control concept becomes feasible. The dummy element
C2 added to the last stage does not consume any hardware
resources.

The latency L(N) of the 2-parallel architecture is

L(N) =
N

2
+ LS · log2(N) + LW (2)

because N/2 clock cycles are required to input all N values,
the last of which has to pass through all log2(N) stages
for the first result value X[0] to become available at the
output. LS and LW are constant latency values given by the
pipelining depth of the data path within each stage and the first
twiddle factor generation unit, respectively. In our particular
implementation we used LS = 6 and LW = 8.

B. FFT Stage Architecture with Decentralized Control

Fig. 3 shows a more detailed diagram of a single stage
from Fig. 2. Each stage s = 0, . . . , log2(N) − 1 of the FFT
core includes a local controller of identical structure which
de-multiplexes input data from either of two sources to the
butterfly processing block (BF2), and directs the twiddle factor
generator and criss-cross element. The two data sources are
drawn as vertical and horizontal inputs in Fig. 3.

The vertical input of stage s is used by the surrounding FFT
processor to provide data for a specific FFT length N/2s.
For this, each stage controller handshakes via request and
ready signals with the corresponding input buffer of the FFT
processor.

The horizontal input of stage s is used by the upstream stage
s−1 to provide pre-processed data for further processing. Such
processing must be requested at the local controller of stage
s precisely

TLA(s) =
N

2s+1
+ LW (3)

clock cycles in advance. This look-ahead time TLA(s) allows
stage controller s to operate its ready signal for the vertical
data input, such that FFT frames from both inputs can be
processed back-to-back without idle cycles for the local but-
terfly and criss-cross elements. It also allows stage controller s
to prevent the start of a new vertical-input FFT, which would
collide with future horizontal input data. In contrast to vertical
interfaces, there is no need for horizontal ready signals, since
requests from upstream stages are always handled with higher
priority then external requests.

Using this look-ahead signaling scheme, the chain of local
stage controllers optimally orchestrates data flow through the
FFT core without any central control instance. It avoids flush-
ing the processing pipeline when dynamically changing the
FFT length N as in [12], and always maintains the maximum
theoretical throughput at the FFT core output, provided that
the input buffers of the FFT processor do not run empty.

C. Butterfly Structure Optimizations

There are two major types of radix-2 butterfly operations,
the decimation-in-frequency (DIF) and the decimation-in-
time (DIT) butterfly structure [2]. While both combine two

Fig. 3. Generic FFT stage architecture with local controller, de-multiplexing
vertical and horizontal data inputs to the radix-2 butterfly (BF2), directing the
twiddle factor generator (TFG) and the criss-cross element (C2).

complex-valued data inputs into two complex-valued outputs
by means of two additions/subtractions and one multiplication
with a twiddle factor, they differ in the order of these oper-
ations. The DIF butterfly performs multiplication for one of
the outputs only, whereas the DIT butterfly multiplies one of
its inputs with the twiddle factor.

This difference in the multiplication order results in different
digital noise propagation behavior of DIF and DIT, since
unavoidable product re-quantization is the main source of
digital noise. The DIF butterfly as shown in Fig. 4 (top)
has been selected because it introduces less digital noise
[9]. Re-quantization blocks Q1. . .Q4 are systematically placed
in order to make optimal use of the given multiplier word
width within the DSP slices of the target FPGA technology.
The effect of these quantization blocks on digital noise is
investigated in section III-D.

Another advantage of the DIF butterfly is that the pre-
adder present in every DSP slice can be utilized for one of
the complex addition operations, thus saving FPGA fabric
resources. This is not possible with the DIT butterfly, because
the complex addition is performed after the multiplication,
with the post-adder of two DSP slices already used for re-
combination within real and imaginary parts. Following this
scheme, Fig. 4 (bottom) shows how the arithmetic logic of the
complex multiplication and addition of the DIF butterfly can be
implemented solely using DSP slice resources. As indicated,
some fabric pipeline registers are required for proper timing.

[10] proposed to implement a complex multiplication with
three multipliers. This approach has not been used, because
the order of operations required is unfavorable with respect to
digital noise and also does not allow to map all adder logic to
DSP slices.

D. Digital Noise Reduction

A base word width of B = 25 bits has been selected for
the butterfly arithmetic as shown in Fig. 4 (top). Both butterfly

Fig. 4. Radix-2 decimation in frequency (DIF) butterfly with one complex-
valued addition and multiplication mapped to DSP slices and quantization
blocks Q1. . .Q4 (top). Configuration of the four DSP slices required per
butterfly maximizing pre-adder utilization (bottom).

input and output data is quantized with B bits and the radix
point is scaled such that no overflow occurs. The value of B
has been selected based on the target DSP slice architecture
which supports a 18x25-bit multiplication with full precision.
Since the pre-adder used in each of the DSP slices increases
the word width by one bit, both inputs of the DSP slice are
quantized by Q2 and Q3 to B − 1 bits. Although it would be
possible to save Q2 and Q3 and work with butterfly inputs and
outputs of B−1 bits, a 3 dB drop in the signal-to-quantization-
noise ratio (SQNR) was found in this scenario. Subsequently,
Q1 and Q4 quantize the butterfly outputs to B bits.

For each of the four quantization blocks two different
methods for decreasing the word width have been considered:
truncation (i.e. rounding towards −∞) and rounding towards
nearest (ties round towards +∞ and −∞ for positive and
negative numbers, respectively). While truncation infers no
hardware cost, true rounding is expected to provide more
accurate results.

To evaluate the effect of rounding and truncation on digital
noise, a bit-accurate simulation model of the fixed-point butter-

TABLE I
SQNR FOR DIFFERENT ROUNDING SCHEMES IN QUANTIZATION BLOCKS

Q1. . .Q4, RANDOM AND OFDM INPUT SIGNALS, AND 16/18-BIT
RESOLUTION FOR TWIDDLE FACTORS AND INPUT SIGNALS.

ID Rounding Method SQNR [dB]
Random OFDM

floor() round() 16 bit 18 bit 16 bit 18 bit

R1 Q1,2,3,4 84.9 91.3 83.2 85.8
R2 Q2,3,4 Q1 85.5 93.6 85.2 88.3
R3 Q1,2,4 Q2 85.6 91.7 83.9 86.0
R4 Q1,2,4 Q3 85.1 90.5 83.1 84.9
R5 Q1,2,3 Q4 85.3 93.4 84.2 89.0
R6 Q2,3 Q1,4 86.1 94.8 85.5 89.5
R7 Q1,2,3,4 87.1 92.6 86.0 85.9

fly arithmetic described in section III-C has been implemented,
and the SQNR defined as

SQNR [dB] = 10 · log10

(∑N−1
i=0 |Xf l t[i]|2∑N−1

i=0 |Xf l t[i]−Xf ix[i]|2

)
(4)

is used as performance metric. FFT outputs Xf l t and Xf ix were
obtained from double floating-point precision and bit-accurate
fixed-point simulation, respectively.

Table I summarizes the results obtained for N = 4096.
First, all quantization blocks are set to truncation. Then, each
block is set to rounding mode individually. Finally, all blocks
are set to rounding mode jointly. In each case, the SQNR
is obtained for two different real-valued input signals with
−3 dBFS, i.e. random uniform noise and a typical OFDM
symbol with a peak-to-average power ratio (PAPR) of 12 dB.
As indicated in Table I, both input signals and twiddle factors
W have been simulated with 16- and 18-bit resolution. These
values were chosen in order to evaluate the trade-off between
increased hardware cost for 18-bit twiddle factors and fully
utilizing the second input of the DSP slice multiplier.

The results in Table I show that 18-bit twiddle factors
significantly increase SQNR by about 6 to 8 dB for random
noise input compared to 16-bit twiddle factors. For OFDM
signals the SQNR gain is less. This is due to the high PAPR
of OFDM signals, which prevents a full-scale butterfly input
for almost all samples, and thus makes the additional twiddle
factor resolution less effective. It has been found that the
best SQNR would be achieved for 18-bit twiddle factors with
Q1/Q4 set to rounding, and Q2/Q3 set to truncation.

Furthermore, we found the same noise characteristic for DIF
as seen in [9], when using truncations for Q1. . .Q4. However,
with Q1 set to rounding, a noise spectrum symmetrical around
carrier index k = N/2 − 1 was observed, which was only
achieved for DIT in [9].

E. Twiddle Factor Generation

A dedicated twiddle factor generator (TFG) is connected to
the butterfly unit in each stage, as shown in Fig. 3. Of the
N/2 twiddle factors

W i
N = e−j

2π
N i , i = 0, 1, . . . , N/2− 1 (5)

Fig. 5. Principle of twiddle factor generation for N = 16 (top). Only
the N/8 + 1 = 3 twiddle factors from the yellow area must be stored.
Twiddle factors in the three gray areas are derived from stored values by
swapping real/imaginary parts with sign inversion on both (red), swapping
real/imaginary parts with sign inversion of real part only (blue), or simple
sign inversion for the real part only (green). To optimize block-RAM usage,
only the 16 LSBs of the real and imaginary part of N/8 twiddle factors are
stored, while additional MSBs are appended on the fly to produce twiddle
factors with higher resolution (bottom).

required for calculation in the stage corresponding to N ,
only the value of the real and imaginary part of N/8 + 1
twiddle factors must be known. In particular, the real and
imaginary parts of W 1

N , . . . ,W
N/8
N are stored in a look-

up table. The trivial value of W 0
N = 1 is hard-coded in

order to make the number of entries in the look-up table a
power of two, and thus make efficient use of all addressable
memory resources. All other twiddle factors can then be
deduced from those N/8 + 1 numerical values by means of
appropriate addressing, real/imaginary-part swapping, and/or
sign inversion. This process is exemplified in the top part of
Fig. 5 for N = 16. The other concept used to ensure better
utilization of BRAM resources is shown in the bottom part of
Fig. 5. The N/8+1 values are stored with a 16-bit resolution,
and then are extended on the fly by two additional bits in
order to achieve a total resolution of 18 bits; thereby fully
utilizing the 18x25-bit DSP slice multiplier. An additional sign
inversion is performed on the imaginary part, if IFFT-mode is
active.

Alternatively, CORDIC functions could be used for twiddle
factor generation. This would require less memory resources
at the cost of more algebraic operations and higher latency,
LW , which according to (2) would also slightly increase the
overall latency, L.

TABLE II
DIFFERENCE IN LATENCY AND FPGA RESOURCE USAGE BETWEEN

REFERENCE CORE [12] AND THE PROPOSED FFT CORE WITH
COMPARABLE SQNR FOR N = 64 AND N = 4096 .

N FFT [12] FFT core Diff [%]

SQNR [dB] 64 95.3 95.4 ≈ +0
4096 82.3 85.8 ≈ +0

Latency [cc] 64 161 76 −53
4096 4256 2128 −50

Throughput [value/cc] 64 1 2 +50
4096 1 2 +50

DSP slices 64 12 16 +33
4096 30 40 +33

BRAM [2KB] 64 0 0 /
4096 17 20 +18

LUT-RAM 64 591 387 −35
4096 1299 1421 +9

LUT 64 1342 1488 +11
4096 3001 3441 +15

Flip-Flops 64 3460 3266 −6
4096 7460 7317 −2

IV. EVALUATION ON FPGA

The FFT processor and core concepts described above have
been implemented in VHDL and integrated into a Xilinx
xc7z045-2 device for a target clock frequency of 400 MHz.
The twiddle factors are stored with 16-bit resolution and
extended to 18 bits on the fly in order to fully utilize DSP slice
multipliers. Rounding scheme R1 from Table I has been used.
The VHDL implementation has been verified using cycle-true
and bit-accurate Matlab/Simulink models based on fixed-point
numbers. The continuous-throughput feature has been tested
by simulating multiple FFTs of different length back-to-back.

Table II compares the IP-core [12] with our proposed
FFT core. All latency and SQNR results were obtained by
simulation. The hardware resource numbers have been taken
from the FPGA utilization reports of 400 MHz implementation
runs. For fair comparison of hardware resource usage, [12]
has been configured to achieve a slightly lower SQNR as the
proposed FFT core.

As expected, our proposed approach reduces latency by
a factor of two through its 2-parallel R2MDC architecture.
Additionally, the decentralized control scheme guarantees
the maximum theoretical throughput of two complex values
per clock cycle even when changing between different FFT
lengths. As can be seen in Table II, the halving of latency
and the continuous-throughput feature have been achieved
without doubling the utilization of any FPGA resource type. In
particular, DSP utilization only increases by one third because
of the butterfly optimizations explained in section III-C. The
increase in combinational LUT usage is even less. This is due
to the mapping of almost all butterfly logic to DSP-slices,
which partly compensates for additional control and twiddle
factor generation logic. For N = 4096, the BRAM and LUT-
RAM usage of the proposed solution is slightly higher. This
is because the decentralized control concept requires local
storage for criss-cross elements C2 and twiddle factors, which

is difficult to share between stages. For smaller N , sharing
is less important, because no BRAMs of fixed size are used.
In this case, the proposed twiddle factor generation concept
requires less LUT-RAMs than [12].

V. CONCLUSION

It is feasible to double the throughput and cut the latency of
state-of-the-art FFT FPGA-implementations by half, without
doubling hardware resource utilization and without compro-
mising on the signal-to-quantization-noise ratio. This requires
careful selection of the FFT core architecture and several low-
level optimizations such as butterfly reorganization for optimal
DSP slice mapping and efficient twiddle factor generation.
Using a decentralized control scheme, the proposed general-
purpose FFT core can be embedded into a multi-channel
processor architecture that maintains the maximum theoretical
throughput, even when the FFT length is changed.

Future work will include BRAM optimizations by means
of dual-port memories. Further investigations are required to
explain the difference between our results and [9] regarding
the spectral characteristics of digital noise.

ACKNOWLEDGMENT

The authors would like to thank Dr. David Perels for fruitful
discussions and valuable comments on the topic of OFDM sys-
tem implementation. The research leading to these results has
partially received funding from the Swiss Hasler Foundation.

REFERENCES

[1] J. G. Nash, “Computationally efficient systolic architecture for com-
puting the discrete Fourier transform,” IEEE Transactions on Signal
Processing, vol. 53, issue 12, December 2005.

[2] Richard G. Lyons, “Understanding digital signal processing,” 3rd ed,
Prentice Hall, 978-0-13-702741-5, August 2011, pp129-156.

[3] E. E. Jr. Swartzlander, “Systolic FFT processors: past, present and
future,” IEEE 17th International Conference on Application-specific
Systems, Architectures and Processors, pp. 153-158, Sept. 2006.

[4] Shousheng He, and M. Torkelson, “Designing pipeline FFT proces-
sor for OFDM (de)modulation,” 1998 URSI International Symposium
on Signals, Systems, and Electronics. Conference Proceedings (Cat.
No.98EX167), September 1998.

[5] Q. Lu, X. Wang, and J. Niu, “A low-power variable-length FFT processor
base on radix-24 algorithm,” Asia Pacific Conference on Postgraduate
Research in Microelectronics Electronics (PrimeAsia), January 2009.

[6] M. Garrido, J. Grajal, M. A. Sanchez, and O. Gustafsson, “Pipelined
radix-2k feedforward FFT architectures,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 21, issue 1, January 2013.

[7] S. Mookherjee, L. DeBrunner, and V. DeBrunner, “A low power radix-2
FFT accelerator for FPGA,” 49th Asilomar Conference on Signals,
Systems and Computers, November 2015.

[8] M. Hasan, T. Arslan, and J. S Thompson, “A delay spread based
low power reconfigurable FFT processor architecture for wireless re-
ceiver,” 2003 International Symposium on System-on-Chip (IEEE Cat.
No.03EX748), November 2003.

[9] I. Szolik, K. Kovac V, and Smiesko, “Influence of digital signal
processing on precision of power quality parameters measurement,
“Measurement Science Review, vol. 3, section 1, 2003.

[10] M. Hemnani, S. Palekar, P. Dixit, and P. Joshi, “Hardware optimization
of complex multiplication scheme for DSP application,” 2015 Inter-
national Conference on Computer, Communication and Control (IC4),
September 2015.

[11] “IEEE 1901-2010 -Standard for broadband over power line networks:
medium access control and physical layer specifications,” 2011.

[12] Xilinx, “Fast Fourier transform v9.0, logic core ip product guide,”
https://www.xilinx.com/support/documentation/ip documentation/xfft/
v9 0/pg109-xfft.pdf, October 2017.

