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Abstract: This paper reviews non-intrusive load monitoring (NILM) approaches that employ
deep neural networks to disaggregate appliances from low frequency data, i.e., data with sampling
rates lower than the AC base frequency. The overall purpose of this review is, firstly, to gain an
overview on the state of the research up to November 2020, and secondly, to identify worthwhile
open research topics. Accordingly, we first review the many degrees of freedom of these approaches,
what has already been done in the literature, and compile the main characteristics of the reviewed
publications in an extensive overview table. The second part of the paper discusses selected aspects
of the literature and corresponding research gaps. In particular, we do a performance comparison
with respect to reported mean absolute error (MAE) and F1-scores and observe different recurring
elements in the best performing approaches, namely data sampling intervals below 10 s, a large
field of view, the usage of generative adversarial network (GAN) losses, multi-task learning, and
post-processing. Subsequently, multiple input features, multi-task learning, and related research
gaps are discussed, the need for comparative studies is highlighted, and finally, missing elements for
a successful deployment of NILM approaches based on deep neural networks are pointed out. We
conclude the review with an outlook on possible future scenarios.

Keywords: non-intrusive load monitoring; load disaggregation; NILM; review; deep learning; deep
neural networks; machine learning

1. Introduction

Non-Intrusive Load Monitoring (NILM)—equally referred to as load disaggregation—
aims to identify the individual power consumption or on/off state of electrical loads by
relying exclusively on the measurement of the aggregated consumption of these loads. The
term was coined by Hart in their seminal works [1,2], that initiated the NILM research field.
As the term non-intrusive suggests, NILM is motivated by applications where metering of
single appliances is necessary, but not feasible with conventional measurement devices,
e.g., because of cost considerations or obtrusiveness. Potential NILM applications include,
for example, user feedback for energy saving purposes, overseeing activities of daily living
for the health assessment of elderly people, or demand management (see, e.g., [3–6]).

Before proceeding, it is essential to clarify some nomenclature typical of the NILM
jargon and how this relates to the data used. Electric meters internally sample voltage
and current signals at frequencies significantly greater than the base frequency of alternate
current (AC). Meters can either output these raw data directly or averaged values such
as, e.g., root mean square (RMS) voltage, current, power, or total harmonic distortion
(THD) are calculated and output at lower frequencies. In the NILM literature, the following
terms are used (We are aware that the given definition is slightly diverging from the
conventionally used threshold of 1 Hz (e.g., [3]). However, we feel 1 Hz is somewhat
arbitrary, whereas the provided definition seems to be a natural splitting point.):
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• Low frequency approaches are those which use data (i.e., features) produced at rates
lower than the AC current base frequency;

• High frequency approaches are those which use raw data, sampled at rates higher
than the AC current base frequency.

The advantage of using high frequency data should be quite obvious, since these
preserve the entire signals and therefore allow us to extract the maximum information
content. This is confirmed by various works, e.g., ref. [7] showed that, using raw data
sampled at 1 MHz, it is even possible to distinguish between two appliances of the same
type. Nevertheless, the cost of gathering high frequency data constitutes a major obstacle:
Dedicated infrastructure is needed, and this is expensive both in terms of the hardware
itself and the extra installation effort. On the other hand, the loss in information intrinsic
in low frequency features is offset by the tremendous ease with which those data can be
collected. Indeed, around the year 2010, the European Union and the US started to mandate
and actually roll-out smart meters [8]. The advanced versions of these meters can export
low frequency data to the outside (e.g., the meter E450 from Landis+Gyr has this capability).
The pervasive roll-out of smart meters will therefore unlock all those applications which
can benefit from NILM and which can be tackled using low frequency approaches.

Since its inception, the NILM research field has become quite diverse. The classic
approach to low frequency NILM—as proposed in [1,2]—is event based. Simply stated,
this means that the aggregate power series is first analyzed to find raises or drops that
indicate device switching events, and these events are subsequently assigned to certain
appliances. Later, one major avenue of NILM research used different variants of Hidden
Markov Models, e.g., [9–12]. Over the years, the set of methods that have been applied to
NILM has become extremely rich. A comprehensive overview is given in [13]. With the
recent enormous success that deep learning has found in the vision and natural language
processing domains, it was only a matter of time until deep neural networks (DNN) were
also applied for the first time to NILM; this started in 2015 [14,15]. Since then, the number
of DNN approaches to solve the NILM problem increased rapidly, as can be seen in Table 1.

Table 1. Number of DNN-NILM publications based on low frequency data per year. Numbers are
compiled based on Table 2. That means the number for the year 2020 corresponds to the publications
until end of November, see Section 1.3.

Year 2015 2016 2017 2018 2019 2020

Count 2 6 4 21 36 30

Over the years, different publications have surveyed the NILM literature from various
angles: In [3], the authors focused on NILM feature types for low and high frequency data
and touched algorithms and evaluation metrics. The authors of [16] proposed a taxonomy
of appliance features and compared the reported performance of six classes of supervised
and unsupervised NILM approaches. The authors of [17] surveyed unsupervised NILM
algorithms and discussed the reported performance of eleven approaches. A very compre-
hensive review on inductive algorithms, employed feature sets, and the state of multi-label
NILM classification approaches has been compiled by [13]. More recently, the authors of [18]
discussed available public NILM datasets, and employed NILM performance metrics, tools,
and frameworks, and corresponding limitations and challenges. Ref. [19] touched on dataset
complexity and compared the reported performance of eight NILM approaches under this
viewpoint. Three of these approaches employed DNN approaches on low-frequency data.
Finally, the authors of [20] summarized advancements on HMM and DNN approaches. With
respect to DNN approaches, they summarized the work performed in [21,22]. While the
previously mentioned survey papers compared performance as it was reported by the original
authors, very recently, two works compared classical and DNN approaches under identical
conditions [23,24]. The authors of [23] presented an extension to the NILM tool kit (NILMTK)
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library [25,26], with the exact purpose of simplifying direct comparisons, and [24] used this
new functionality for an extensive comparison of eight available algorithms.

1.1. Contributions

Some of the mentioned review papers include DNN-based NILM approaches. How-
ever, what is missing so far is a comprehensive and structured overview on the ideas
and findings in the field of DNNs applied to low frequency NILM and, based on that, a
discussion on the usefulness of DNN architectural elements, input features or multi-task
learning as well as research gaps particularly for applied deep learning-based NILM. In
this paper, we intend to fill this gap. Therefore, the main contributions of this work are:

• A comprehensive review of NILM approaches based on low frequency data that
employ DNNs, see Section 3. In particular, within Section 3, we discuss various
options available for these approaches and provide a structured overview of the main
characteristics of all reviewed approaches in Table 2.

• A discussion of selected aspects and corresponding research gaps in Section 4. In
particular:

– We compare the performance of approaches and extract common features of best
performing approaches in Section 4.1;

– We discuss the possible role of multiple input features and multi-task learning
on NILM performance in Sections 4.2 and 4.3, respectively;

– We illustrate the importance of parameter studies in Section 4.4, and
– We outline major research gaps concerning the application of deep learning for

NILM in Section 4.5.

Thereby, we hope that the interested reader will quickly identify the relevant literature
for their own research and that our contributions will inspire new research activities, and
thus ultimately advance the entire research field.

1.2. Scope

The scope of this review are NILM approaches based on DNNs using low frequency
data. In the remainder of this text, we use the term DNN-NILM to designate the corre-
sponding approaches. The choice to focus on low frequency data in our review is motivated
by our strong belief that many applications could benefit from NILM, coupled with our
observation that low frequency data will most likely be the only one available at scale in
the near future. In our vision, all households equipped with smart meters will soon be
able to become fully energy aware, informing their inhabitants of which appliances are
being used, how they are being used, and even whether they are behaving abnormally or
about to fail. This latter point is known as predictive maintenance and is currently applied
in industrial settings, but being able to detect billions of appliances which consume an
abnormal amount of power would have a beneficial impact of our society and its carbon
footprint. With our review, we therefore try to make a contribution to push forward the
development and understanding of low frequency NILM.

The focus on DNNs is motivated firstly by their proven success in other domains, and
secondly by their good performance in the NILM domain: Recently, traditional and DNN-
NILM approaches have been compared under identical conditions in two works [23,24].
The authors found that each of the compared DNN approaches—with few exceptions—
performed better than each of the classical approaches. In particular for multi-state ap-
pliances, the performance gap was found to be “rather discernible” [24]. Publications
that use shallow neural networks with only a single hidden layer such as, e.g., [27–29],
are not included in our review. We restricted ourselves to approaches that train neural
networks with back-propagation, excluding alternative approaches such as, e.g., [30,31].
Since the scope involves DNNs and NILM, we assume that the reader is familiar with the
general concepts of the two fields, and we will merely introduce the basic NILM problem
formulation in Section 2.1. With respect to DNNs and deep learning, we will refer the
reader to comprehensive books on the topic in Section 2.2.
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Table 2. Reviewed references. Publications are sorted by year. Except for the starred publications, the sorting within a year is arbitrary. The table is available in Excel format on our
GitHub account, see ’Supplementary Materials’ for the link. Explanations with respect to specific columns follow. Best: Best performing, according to Section 4.1. Datasets: See Table 3
for details. Setting: R→ residential, I→ industrial, C→ commercial. The columns FGE to WDR indicate if the specific appliance has been disaggregated in the reference. FGE: fridge,
DWE: dishwasher, MWV: microwave, WME: washing machine, KET: kettle, SOC: stove/oven/cooker, TDR: tumble dryer, HPE: heat pump, WDR: washer-dryer. Further Appliances:
Additional appliances not listed in the previous columns. E.Sce.: Evaluation Scenarios; sn→ only seen scenario evaluated, usn→ additionally unseen scenario evaluated, ctl→ also
cross-domain transfer learning evaluated. Aug.: Data Augmentation; dn→ use synthetic training data, yes→ data augmentation employed. Input; P→ active power, Q→ reactive power,
I→ current, S→ apparent power, P2D → active power window transformed into 2D representation, P-S→ difference between active and apparent power, ∆P→ first-order difference of
the active power signal, PF→ power factor, TofD→ time of day, WE→ week or weekend day, DofW→ day of week, MofY→ month of year, Tout → outdoor temperature, Pvar → variant
power signature [32,33], na→ see Section 3.3.1. DNN Elements: See Section 3.4.1 for the meaning of the various employed abbreviations. Comma separated descriptions refer to different
trained models. Output: Comma separated descriptions refer to different trained models. Elements connected with an & indicate that a DNN has several outputs of a different type.
Similarly, the subscript m means that the DNN provides the identical output for multiple different appliances. on/off → on/off status of appliance, Pclass → class of active power. Please refer
to Section 3.5 for details concerning Papp, Ptotal , Prest, location, and stateChange. Code: (electronic version) link to code repository as indicated in the reference or found through a very
shallow google search.
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[34] ? 2020 UK-DALE,
REFIT R X X X X X usn no P CNN-dAE-GAN P https://github.com/

DLZRMR/seq2subseq

[35] ? 2020 UK-DALE,
REDD R X X X X X usn yes P CNN-att-GAN on/off & P -

[36] ? 2020 UK-DALE,
ECO R X X X X X X TV usn no P, Q, S,

I, PF CNN-biLSTM P -

[37] ? 2020 UK-DALE R X X X usn no P CNN-dAE on/offm
https://github.com/
lmssdd/TPNILM

[38] 2020
UK-DALE,

REFIT,
SynD

R X X X X sn no P2D CNN-dAE P https://github.com/
BHafsa/image-nilm

[39] 2020
UK-DALE,

REDD,
REFIT

R X X X X ctl no P CNN-GAN,
CNN-dAE-GAN P -

[40] 2020 REDD,
Enertalk R X X X TV, rice

cooker sn no P CNN-biLSTM P -

[41] 2020 REDD R X X sn no P CNN-dAE P -

[42] 2020
REDD,

AMPds,
REFIT

R X X X X X X ctl no P biLSTM P -

[43] 2020 AMPds,
REFIT R X X X X X X sn no P CNN-dAE-GAN P -

[44] 2020 proprietary R water heater usn yes P CNN-LSTM P -
[6] 2020 REFIT R X X X X toaster sn yes P CNN-biGRU on/off & P -

[45] 2020 proprietary I sn no p CNN-biGRU, LSTM on/off -

[46] 2020 UK-DALE R X X X X X sn no P CNN-dAE on/offm &
Pm

https://github.com/
sambaiga/
UNETNiLM

https://github.com/DLZRMR/seq2subseq
https://github.com/DLZRMR/seq2subseq
https://github.com/lmssdd/TPNILM
https://github.com/lmssdd/TPNILM
https://github.com/BHafsa/image-nilm
https://github.com/BHafsa/image-nilm
https://github.com/sambaiga/UNETNiLM
https://github.com/sambaiga/UNETNiLM
https://github.com/sambaiga/UNETNiLM
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[47] 2020
UK-DALE,

REFIT,
HES

R X X X X usn no P CNN-s2p P -

[48] 2020 REFIT R X X usn no P - P
https://github.com/
JackBarber98/pruned-
nilm

[49] 2020 UK-DALE,
REDD R X X X usn no P CNN-s2p P, Pm

https://github.com/
EdgeNILM/
EdgeNILM

[50] 2020 REFIT R X X X X toaster usn no P - P -

[51] 2020
UK-DALE,

REDD,
DRED

R X X X X X computer sn no P - P -

[52] 2020 DRED R X X X X sn no P - P -
[53] 2020 REFIT R X usn no P CNN-dAE P -
[54] 2020 REDD R X usn no P LSTM P -

[55] 2020 UK-DALE,
REDD R X X X X X usn no P att P

https://github.com/
Yueeeeeeee/BERT4
NILM

[56] 2020 REDD R X X X X X X
bathroom,
heater,
kitchen outlet

sn no P CNN on/offm -

[57] 2020 REDD,
dataport R X X X X X X sn no P, ∆P CNN-LSTM Pm -

[20] 2020 summary of [21,22]
[58] 2020 UK-DALE R X X usn yes P CNN-s2p P -

[59] 2020 REFIT R X X X X X TV sn no P CNN-GRU
Papp &
Ptotal &
Prest

-

[60] 2020 AMPds R X X X sn dn P, I LSTM on/off -

[61] 2020 proprietary
(dc) R dc appliances sn no I FF, LSTM Pclass -

[62] ? 2019 REFIT R X X X X usn no P CNN-wn P, on/off
https:
//github.com/jiejiang-
jojo/fast-seq2point

[63] ? 2019
UK-DALE,

REDD,
REFIT

R X X X X ctl no P biGRU, CNN-s2p on/off & P -

[64] ? 2019 REDD R X X X usn no P CNN, CNN-LSTM,
LSTM P -

[65] 2019 UK-DALE R X X X X usn no S CNN-s2sub P -

[66] 2019 proprietary R X X bottle
warmer sn yes P AE/Kmeans-dAE P, Pm -

[67] 2019 REDD R X X X X X sn no P CNN-s2p on/off -

[68] 2019 AMPds R X X X X X X sn no

P,
MofY,
DofW,
TofD

LSTM-FF Pclass -

https://github.com/JackBarber98/pruned-nilm
https://github.com/JackBarber98/pruned-nilm
https://github.com/JackBarber98/pruned-nilm
https://github.com/EdgeNILM/EdgeNILM
https://github.com/EdgeNILM/EdgeNILM
https://github.com/EdgeNILM/EdgeNILM
https://github.com/Yueeeeeeee/BERT4NILM
https://github.com/Yueeeeeeee/BERT4NILM
https://github.com/Yueeeeeeee/BERT4NILM
https://github.com/jiejiang-jojo/fast-seq2point
https://github.com/jiejiang-jojo/fast-seq2point
https://github.com/jiejiang-jojo/fast-seq2point
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[69] 2019 UK-DALE R X X X X X X toaster sn yes P CNN-s2p P -

[70] 2019 proprietary R X X X X

coffee
machine, hair
dryer, rice
cooker,
toaster,
blender, iron,
disposer

- no P CNN-dAE location
https:
//people.csail.mit.
edu/cyhsu/sapple/

[71] 2019 UK-DALE,
REDD R X ctl no P2D CNN on/off

https://github.com/
LampriniKyrk/
Imaging-NILM-time-
series

[72] 2019 UK-DALE,
AMPds R X X X X X X X X usn yes P CNN-att-biLSTM P, on/off -

[73] 2019 proprietary R X X X X

computer,
fan, hair
dryer, printer,
TV, water
dispenser

? ? I CNN on/offm -

[74] 2019 ECO R X X computer,
freezer sn no

P, P-S,
TofD,
WE

FF P -

[75] 2019 Enertalk R X rice cooker,
TV usn no P, Q CNN-s2p P, on/off

https:
//github.com/ch-shin
1

[76] 2019 dataport R X X X X X sn no P CNN-GRU P -

[77] 2019 PLAID R X X X X X

computer,
fan, hair
dryer, heater,
vacuum
cleaner

usn yes na CNN, FF on/offm -

[78] 2019 REDD R X X X X X X bathroom,
kitchen outlet usn no P RNN P, on/off -

[23] 2019 dataport R X air, furnace usn no P - P

https://github.com/
nilmtk/nilmtk/
https://github.com/
nilmtk/nilmtk-contrib

[79] 2019 AMPds R X X X X X sn no P LSTM-FF, GRU-FF P -

[80] 2019 AMPds R X X X X X
furnace, TV &
entertain-
ment

sn no na CNN P -

[81] 2019 UK-DALE,
REDD R X X X X X sn no P CNN, biLSTM on/offm -

https://people.csail.mit.edu/cyhsu/sapple/
https://people.csail.mit.edu/cyhsu/sapple/
https://people.csail.mit.edu/cyhsu/sapple/
https://github.com/LampriniKyrk/Imaging-NILM-time-series
https://github.com/LampriniKyrk/Imaging-NILM-time-series
https://github.com/LampriniKyrk/Imaging-NILM-time-series
https://github.com/LampriniKyrk/Imaging-NILM-time-series
https://github.com/ch-shin
https://github.com/ch-shin
https://github.com/nilmtk/nilmtk/
https://github.com/nilmtk/nilmtk/
https://github.com/nilmtk/nilmtk-contrib
https://github.com/nilmtk/nilmtk-contrib


Energies 2021, 14, 2390 7 of 34

Table 2. Cont.

R
ef

.

B
es

t

Ye
ar Dataset(s)

Se
tt

in
g

D
W

E

FG
E

M
W

V

W
M

E

K
ET

SO
C

T
D

R

H
V

A
C

W
D

R

H
PE

Li
gh

t Further
Appliances E.

Sc
e.

A
ug

.

Input DNN Elements Output Code

[82] 2019 proprietary R X X X furnace sn no na FF on/offm -

[83] 2019 ECO R X X X freezer, home
theater sn no P RNN on/offm -

[84] 2019 UK-DALE,
dataport R X X X X X X sn no P CNN-s2s P -

[85] 2019 UK-DALE,
dataport R X X X X X X sn no P CNN P, on/off -

[86] 2019 UK-DALE R X X X X X sn no P CNN-LSTM Pm -

[87] 2019 proprietary R X X X X
coffee filter,
coffee
machine, TV

sn yes P RNN, CNN-LSTM,
CNN-dAE P -

[88] 2019 AMPds R X X X X X sn dn P LSTM-dAE P, on/off -

[89] 2019 AMPds R X X X X sn no P, Q, S,
I CNN-s2s P -

[90] 2019 AMPds R X X X X sn no P biLSTM P -

[91] 2019
UK-DALE,

REDD,
REFIT

R X X X X X ctl no P CNN-s2p P
https://github.com/
MingjunZhong/
transferNILM

[92] 2019 dataport R X X X X X sn no P2D RNN, CNN-dAE P
https://github.com/
yilingjia/TreeCNN-for-
Energy-Breakdown

[93] 2019 UK-DALE,
REDD R X X X X X X sn no P - P

https://gitlab.com/a3
labShares/A3
NeuralNILM

[94] 2019 AMPds2 R X X X X sn no P, Q, S,
I CNN-wn Pm

https://github.com/
picagrad/WaveNILM

[95] 2019 REDD R X X X X kitchen outlet sn no ∆P FF, biGRU stateChange -

[96] 2019 REDD,
dataport R X X X X X air, furnace,

kitchen outlet usn no P VRNN P
https://bitbucket.org/
gissemari/
disaggregation-vrnn

[97] ? 2018 UK-DALE,
REDD R X X X X X usn no P CNN-s2sub on/off & P

https:
//github.com/ch-shin
1

[98] ? 2018 IDEAL R X X X X X shower usn no S CNN-s2sub P -
[99] 2018 dataport R X sn no P LSTM P, on/off -
[100] 2018 UK-DALE R X X ? no P CNN-biLSTM on/off -
[101] 2018 proprietary C sn no P CNN-s2p P -
[102] 2018 UK-DALE R X X X X X X X computer sn no P CNN on/offm -

[33] 2018 UK-DALE R X X X X X usn yes P, Pvar ,
TofD CNN-s2p P, Pclass -

[103] 2018 proprietary R X X X bottle
warmer, TV ? no P dAE Pm -

https://github.com/MingjunZhong/transferNILM
https://github.com/MingjunZhong/transferNILM
https://github.com/MingjunZhong/transferNILM
https://github.com/yilingjia/TreeCNN-for-Energy-Breakdown
https://github.com/yilingjia/TreeCNN-for-Energy-Breakdown
https://github.com/yilingjia/TreeCNN-for-Energy-Breakdown
https://gitlab.com/a3labShares/A3NeuralNILM
https://gitlab.com/a3labShares/A3NeuralNILM
https://gitlab.com/a3labShares/A3NeuralNILM
https://github.com/picagrad/WaveNILM
https://github.com/picagrad/WaveNILM
https://bitbucket.org/gissemari/disaggregation-vrnn
https://bitbucket.org/gissemari/disaggregation-vrnn
https://bitbucket.org/gissemari/disaggregation-vrnn
https://github.com/ch-shin
https://github.com/ch-shin
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[104] 2018 UK-DALE R X X X X X usn no P CNN-VAE P -

[105] 2018 UK-DALE R X X usn yes P GAN P https://github.com/
KaibinBao 1

[106] 2018 AMPds2 R X home office sn no P, Tout LSTM on/off & P -

[107] 2018 dataport R X X X X X X ∼30 more sn no Pm dAE-LSTM P, Pm

https:
//github.com/nlaptev
1

[108] 2018 UK-DALE R X X X X sn no P biLSTM, biGRU P -
[109] 2018 IMD I sn no P CNN-wn P -

[22] 2018 UK-DALE,
AMPds2 R X X X X X X X X usn yes P, Q CNN-dAE P 2

[110] 2018 REDD R X X X usn dn P CNN-s2sub P -

[111] 2018 UK-DALE R X X X X X usn no P biLSTM, biGRU,
CNN-s2p P

https://github.com/
OdysseasKr/online-
nilm

[112] 2018 UK-DALE R X X X X X TV usn no P CNN-dAE on/off -
[113] 2018 proprietary C X X usn yes P CNN-dAE P -

[21] 2018
UK-DALE,

REDD,
AMPds

R X X X X X X X X usn yes P CNN-dAE P -

[114] 2018 REDD R X X X X X X sn no na CNN on/offm -

[115] 2017 proprietary R X X computer,
heater usn yes P dAE P -

[32] 2017 UK-DALE,
REDD R X X X dehumidifier,

toaster, TV sn no P, Pvar LSTM on/offm -

[116] 2017 REDD R X X X X X X sn no na CNN on/offm -
[117] 2017 proprietary R X usn no P, Q, S CNN-dAE P & Q -

[118] ? 2016 REDD R X X X sn yes P CNN, RCNN,
biLSTM, biGRU Pclass -

[119] 2016 UK-DALE,
REDD R X X X X X usn no P CNN-s2s, CNN-s2p P

https://github.com/
MingjunZhong/
NeuralNetNilm

[120] 2016 UK-DALE R sn no P RNN, GRU on/off -

[121] 2016 UK-DALE R X X X X X usn no P CNN-dAE,
CNN-LSTM P -

[122] 2016 REDD R X X X kitchen outlet sn dn P HMM-DNN P -
[123] 2016 dataport R X X X usn no P2D CNN P -
[15] 2015 REDD R X X X usn dn P biLSTM P -

[14] 2015 UK-DALE R X X X X X usn yes P
CNN-dAE,
CNN-biLSTM,
CNN-FF

P https://github.com/
JackKelly/neuralnilm

1 GitHub page of first author; 2 Experimental framework available upon request.

https://github.com/KaibinBao
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https://github.com/MingjunZhong/NeuralNetNilm
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https://github.com/JackKelly/neuralnilm
https://github.com/JackKelly/neuralnilm


Energies 2021, 14, 2390 9 of 34

As the DNN-NILM literature reviewed contains only three publications using data
from non-domestic settings (two commercial, one industrial), this distribution means that
our review concentrates mainly on domestic NILM.

1.3. Methodology

Publications in the scope of this work have been collected in the following ways:
Firstly, by systematically checking conference proceedings from the bi-annually ’Interna-
tional NILM Workshop’ 2020 to 2016 (nilmworkshop.org, accessed on 11 January 2021)
and from the ’ACM International Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation (BuildSys)’ 2020 to 2015 (buildsys.acm.org, accessed on 11 Jan-
uary 2021). The first conference is specifically dedicated to NILM, and the second in 2020
featured a dedicated NILM track. Secondly, by searching on Google Scholar and IEEE
Xplore® for keyword combinations of ’DNN’, ’deep learning’, ’NILM’, ’non-intrusive’,
’load monitoring’, and ’load disaggregation’. This search has been done on several occa-
sions and by different persons. Thirdly, we checked very thoroughly all the references
in identified papers for anything not yet on our list. While this approach might have
missed a few recent publications, we are fairly sure that the survey is quite complete for
the past years because of the systematic checking of references. The last iteration of our
search process has been performed at the end of November 2020. We resulted with the
DNN-NILM publications listed in Table 2, which reflects accordingly the body of work
this survey paper is based on. The literature review, discussion, and all conclusions are
deduced solely from these publications.

2. Fundamentals

As we assume that the reader is knowledgeable about both NILM and Deep Neural
Networks, the following sections only skim the corresponding subjects and the reader is
referred to relevant literature.

2.1. The Disaggregation Problem

The aggregate active power xa
t of a set of appliances measured at time t can be formally

defined as:

xa
t =

M

∑
m=1

ym
t +

K

∑
k=1

wk
t + εt︸ ︷︷ ︸

=et

(1)

where ym
t are the contributions of individual appliances m that have been metered at the

time of data acquisition, and M is their total number. The sum over k corresponds to
the contribution of K further appliances wk

t not sub-metered during the measurement
campaign. εt is a noise term originating from the measurement equipment. In the literature,
the NILM problem is typically stated such that the noise term et includes the sum over
non measured equipment. We explicitly separate the two contributions, as their nature
is quite different. We can assume that the measurement noise εt is well behaved, i.e., it
follows approximately a standard distribution and is small compared to the actual signal.
On the contrary, no such assumption can be made about the term ∑ wk

t . The contribution
from non sub-metered appliances wk

t typically amounts to a major part of xa
t and the power

distribution is non-Gaussian. From the point of view of disaggregation, the sum over
m denotes the appliances that are disaggregated, and the sum over k consists of all the
remaining appliances in the aggregate signal. If only a single appliance ym

t is disaggregated,
then M = 1.

One goal of energy disaggregation is to determine the individual ym
t only based on the

measurement of the aggregate signal. If machine learning or in particular deep learning is
used to solve the problem, this leads to a so-called regression problem. While many authors
work with the active power component xa

t only, other information from the aggregate signal
such as, e.g., apparent power, reactive power, or the current can also be used to solve the
disaggregation challenge. In the particular case of countries where the residential power

nilmworkshop.org
buildsys.acm.org
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supply is fed on three phases, features from the aggregate power can even be available on
all of these three phases.

A second, slightly less challenging goal of energy disaggregation is to find the on/off
state sm

t of appliance m at time t from the aggregate signal. If machine learning is used, this
leads to a so-called binary classification problem. In this problem formulation, only the
state of the machine will be output. After recognizing the on and off states, the run-time
of an appliance can be calculated. By multiplying the run-time by the average energy
consumption of a machine, one can still obtain an energy estimation. Such an estimate will
be more in line with use cases that require only the average consumption over a certain
time period.

2.2. Deep Neural Networks

Deep neural networks are a vast subject, and the focus of this review is merely their
application to NILM. In this text, we therefore refrain from giving an introduction on DNNs
and refer the reader to the following books:

• The book [124] (www.deeplearningbook.com accessed on 11 January 2021) is a very
comprehensive resource on the topic, covering the basics up to research topics.

• The book [125] has been written by the initial author of Keras [126], a high level deep
learning library. Accordingly, the book gives an applied introduction to deep learning.
A lot of emphasis is put on the intuition behind concepts, and the text is interwoven
with code examples based on the Keras library.

The references mentioned are the books we found useful in our work. The selection is
of course a small subset of the many excellent resources available on the topic.

3. Literature Review

When applying DNNs to NILM, many options are available: For example, what
data to use, what DNN architecture to employ, how to evaluate the results, and so on.
An illustration of these ’degrees of freedom’ is given in Figure 1. The subsections below
roughly follow the grouping done there. The aim of this section is to provide the reader
with an overview on what has already been done in the literature in the scope of this review.

Figure 1. Illustration of the main degrees of freedom for DNN-NILM research. Colors indicate a loose grouping and should
not be understood as a taxonomy.

www.deeplearningbook.com
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3.1. Datasets and Appliances

DATASETS: The number of NILM datasets has been increasing over the last years,
see [127,128] for recent overviews and [129–131] for the most recent published datasets
we are aware of. In Table 3, we characterize only the publicly available datasets that have
been used in the reviewed studies. The datasets at the beginning of the table are those
more frequently used: Both UK-DALE and REDD were employed in approximately 40 and
30 studies, respectively, followed by AMPds, REFIT, and dataport each employed around
10 times. The ECO dataset is used three times, and other datasets are only used once or
twice. The Industrial Machines Dataset (IMD) is to our knowledge the only available open
industrial dataset. All remaining open datasets were measured in a residential setting.
There are also a number of studies based on proprietary datasets measured in different
settings: Nine residential, two commercial, one industrial, and one with dc-appliances.
While not explicitly the scope of this review, the distribution of the employed datasets
means that our review concerns mostly domestic NILM. Table 2 lists the datasets employed
by each reviewed publication.

APPLIANCES: Appliances that have been disaggregated in the corresponding publi-
cations are listed in Table 2. The most investigated residential appliances in decreasing
order are: dishwasher, fridge, microwave, washing machine, kettle, stove/oven/cooker,
tumble dryer, HVAC, washer-dryer, heat pump, and light. Further electrical loads that
appear fewer than ten times in the literature are given in the column ’Further Appliances’
of Table 2. A few publications concentrated either on commercial or industrial applications
using mostly proprietary datasets. These publications are marked in the column ’Setting’
of Table 2.

Table 3. Main characteristics of the open datasets used in the reviewed DNN-NILM literature, see Table 2. Datasets closer
to the top have been employed in more studies. Type indicates the type of the dataset: R→ residential, Rs → synthetic
residential, I→ industrial. IMD is, to our knowledge, the only publicly available industrial dataset. ’#H’ and ’#A’ mean
number of houses and appliances, respectively. ’Agg’ and ’Appl’ stand for ’aggregate’ and ’appliance’, respectively. For the
IDEAL dataset, available information has been extracted from [98]. The authors plan to release the dataset.

Name Country
Code

Year Type #H #A Summed up
Duration [d]

Agg
Sampling

Appl
Sampling

UK-DALE [132] GBR 2017 R 5 109 2247 6 s, 16 kHz 6 s
REDD [133] USA 2011 R 6 92 119 1 Hz, 15 kHz 1

3 Hz
AMPds(2) [134–137] CAN 2016 R 1 20 730 1 min 1 min

REFIT [138] GBR 2016 R 20 177 14,600 8 s 8 s
dataport [139] USA 2015 R 1200+ 8598 1,376,120 1 Hz, 1 min 1 Hz, 1 min

ECO [140] CHE 2016 R 6 45 1227 1 Hz 1 Hz
DRED [141] NLD 2014 R 1 12 183 1 Hz 1 Hz

Enertalk [127] KOR 2019 R 22 75 1714 15 Hz 15 Hz
HES [142] GBR 2010 R 251 5860 15,976 2–10 min 2–10 min

IDEAL GBR - R - - - 1 Hz 1 or 5 Hz
IMD [143] BRA 2020 I 1 8 111 1 Hz 1 Hz

PLAID [144] USA 2014 R 65 1876 1–20 s - 30 kHz
SynD [130] AUT 2020 Rs 1 21 180 5 z 5 Hz

3.2. Data Processing

Raw datasets can be employed differently for training and evaluating DNN-NILM
approaches. Below, we review different aspects.

3.2.1. Training and Evaluation Scenarios

Training and evaluation of NILM algorithms can be done under different scenarios.
Typical scenarios appearing in the literature are defined in the following.

OBSERVED VS. SYNTHETIC: In a synthetic scenario, the term ∑ wk
t in Equation (1) is set

to zero.
Corresponding data are typically created by summing up the power consumption

from individual appliances. Only the measurement noise εt is therefore included in the
noise term et. In an observed scenario, the noise term et also includes further appliances
that have not been measured individually, i.e., ∑ wk

t 6= 0. The synthetic scenario can be
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considered a laboratory setting for a basic assessment of algorithms. Data in a real scenario
will typically be observed.

We use here the terms observed and synthetic scenario equivalently to noised and denoised
scenario, as these scenarios are commonly referred to in the literature. We introduce this
new nomenclature because we believe that (i) the original terms are rather misleading for
readers with less experience in the field, and (ii) the proposed terms express the essential
difference between the two scenarios much more precisely.

SEEN VS. UNSEEN VS. CROSS-DOMAIN TRANSFER: The terms seen and unseen are
used in the context of the evaluation of NILM algorithms. In the seen case, an algorithm
is evaluated on new data from households that it has already been trained on. The
resulting score gives, therefore, an indication on how well the trained algorithm can detect
a particular appliance. Unseen means, that the algorithm is evaluated on data from a new
household that was not available in the training data. This scenario tests the capability
of algorithms to detect an appliance type [145]. Corresponding test results indicate the
performance of a pre-trained model that is deployed on data from houses previously
not seen during training. For the cross-domain transfer learning [91] scenario, the unseen
house is taken from a different dataset. This scenario tests the transferability of the tested
approach to an even more diverse setting as in the unseen case: Data could have been
metered by different electrical meters or could originate from a different country. To our
best knowledge, this scenario has only been investigated in [39,42,63,71,91]. The different
scenarios are illustrated in Figure 2. The column ’Evaluation Scenario’ in Table 2 lists the
scenarios employed for the reviewed references.

Figure 2. Different NILM evaluation scenarios: seen: the algorithm is evaluated on new data from a house that was already
available during training; unseen: the algorithm is evaluated on data from a house not seen during training; cross-domain
transfer learning: the algorithm is evaluated on data from a different dataset.

3.2.2. Preprocessing

Before data can be used by the DNNs, the raw data are transformed. Below we discuss
typical data transformation steps employed in the literature.

RESAMPLING, FORWARD-FILLING, AND CLIPPING: The sampling frequencies of the
published datasets are given in Table 3. As datasets exhibit missing values due to measure-
ment or transmission equipment failures and a jitter in the timestamps, resampling is used
to obtain evenly sampled data. While the range of sampling frequencies in the reviewed
literature extends from 1

3600 Hz [92,107] to 10 Hz [75], the large majority of the reviewed
works employ either 1

60 Hz or values between 1 and 1
10 Hz. It is noteworthy that in two

cases, data were upsampled to have a higher frequency than the original dataset [36,112].
Results on the influence of the sampling frequency on disaggregation results are presented
in different studies [51,58,75,77]. Most of these studies find a marked dependence on
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the device [51,58,75]. This can be attributed to certain devices exhibiting more frequent
fluctuations that get lost at lower resolution. Ref. [75] analyzes sampling rates from 10 Hz
down to 0.03 Hz for on/off classification and energy estimation for TV, washing machine,
rice cooker. They find that to prevent performance loss for the classification and regression
tasks, the sampling rates should be at least 1 Hz and 3 Hz, respectively. Ref. [58] compares
results obtained with 10 s and 1 min sampling intervals. The authors find “that the perfor-
mance for dishwashers remains comparable while the performance for washing machine
and washer dryer deteriorates dramatically”. The publication [51] focuses exclusively on
the influence of the sampling rate on the performance. The authors conclude that data
sampled at 1/30 Hz might be sufficient to run NILM at high accuracy. It is important to
note, that [51] did, contrary to [58,75], fix the number of inputs to the DNNs instead of
the temporal window. Consequently, the temporal window seen by the network differs in
this study depending on the sampling rate. Finally, [77] investigates the influence of the
sampling rate in case of appliance on-event detection.

Short spans of missing data attributed to WiFi connectivity problems are forward-
filled by many authors with the last available measurement. Typically, up to three minutes
of missing data are filled in this manner [14]. In case of measurements exceeding the rating
of the employed meter, values are clipped.

NORMALIZATION In the DNN-NILM literature, the input normalization for the DNNs
comes in two main flavors:

xstdScaled =
x− x̄
σ(x)

(2)

xminmaxScaled =
x− xmin

xmax − xmin
(3)

where x and xScaled are the input windows (see Section 3.3.1) before and after normalization.
x̄ corresponds to a mean value over the input. Different strategies have been employed:
Most approaches calculate the mean over the complete training set so that the training data
are centered. Other strategies center the data per house (see, e.g., [75]) or per input window
(see, e.g., [14,107]). σ(x) denotes the standard deviation, which is typically calculated on
the complete training set. Alternatively, each input window was divided by the standard
deviation from a random subset of the training data [14]. xmax and xmin correspond to
maximal and minimal values. These values can be maximal or minimal values of the
training dataset, parameters fixed by the authors [53], or quantile values [40]. In order
to make the statistics of the data less sensitive to outliers, [44] transformed them with an
arcsinh before normalizing. Some authors also normalized the target values for the training
of the DNNs. While some publications mention that different normalization strategies
were tried out, only two studies report on the influence of normalization strategies on
training efficiency and testing performance: [34] finds that instance normalization [146]
performs better than batch normalization [40,147] concludes that L2-normalization works
best.

3.2.3. Activation Balancing

In NILM literature, the time interval between an appliance being switched on and
off is referred to as an activation. Domestic appliances exhibit typically one, up to several
activations per day. Usually, the run-time of appliances is low compared to the time they
are switched off. For the training of machine learning algorithms, one is consequently
faced with a skewed dataset that contains only a few samples of the running appliance.
To compensate, several authors balance samples with and without a (partial) activation
during training [14,22,34,35,39,58,60,63,75,89,105,110,112,119,123]. The majority of works
nevertheless train the models using the available data, without taking care of the class
imbalance. In the scope of this review, we are only aware of [34], which investigates the
effect of the ratio between samples with and without an activation on training results. They
found that in case of batch normalization [147], the accuracy strongly decreased at a ratio
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of one to five, whereas for instance normalization [146], the performance increased slightly
up to the largest tested ratio of one to seven. In general, it remains unclear how exactly
activation balancing influences the disaggregation quality and model convergence speed.

3.2.4. Data Augmentation

A common strategy in deep learning to overcome few labeled data samples or under-
represented classes employs data augmentation. It describes the process of transforming
existing measured data or creating synthetic new data in order to achieve DNNs that
generalize better. Recent overviews for data augmentation in the domains of computer
vision and time series can be found in [148–150].

In the reviewed DNN-NILM literature, we see different data augmentation variants:
First, some approaches train in a synthetic scenario, see Section 3.2.1. Only synthetic data
consisting of the summed up loads from appliance sub-meters are used to train and test the
algorithms. Such publications are denoted with a ’dn’ in the column ’data augmentation’ of
Table 2. A second group of publications train on measured aggregate data but add synthetic
data—also created by summing up sub-metered load curves—to increase the size of the
training set. Four authors added individual activations from appliances to a measured
aggregate [6,58,66,115]. Finally, some authors employed specialized strategies: The authors
of [35] found that by adding varying offsets specifically to the on state of the fridge, they
were able to greatly enhance the corresponding disaggregation performance. So-called
’background filtering’ has been proposed by [69] to remove all windows in the aggregate
load curve that contain the target appliance. Activations from the target appliance are
then added randomly to the filtered aggregate to create synthetic data for training. The
authors of [44] use data obtained from SMACH [151], a tool that generates synthetic data
based on time of use surveys and real appliances signatures. They compare scenarios with
different amounts synthetic data and find good generalization performance for models
trained only on synthetic data. We are not aware of any study that compares different data
augmentation strategies.

3.3. Input
3.3.1. Shape

The vast majority of approaches take as a continuous regularly sampled window from
the time series of the aggregate measurement data input for the DNNs. The range of employed
window lengths extends from 90 s [75] to around 9 h [94,98] or even
24 h [66,107]. It is important to note that the number of input samples to the neural net-
works, i.e., the number of neurons in the first layer, depends on the sampling rate. Extreme
values for the size of the input layer are 5 [100], 7 [83], and 10800 [112]. The influence of the
window length on the disaggregation performance at a fixed sampling rate is investigated
in [52,62,97]. While the investigations have been done on different datasets and sampling
rates ([97]→ UK-DALE, REDD at 3 and 6 Hz, [62]→ REFIT at 10 Hz, and [52]→ DRED at
1 Hz), all authors find that the optimal window length depends on the appliance.

Few authors transform the time series data into a two-dimensional representation before
feeding it into a DNN. Corresponding publications are marked with ’P2D’ in the column
’Input’ of Table 2: [38,71,123] use the Grammian Angular Field (GAF) [152] to transform a
continuous part of the aggregate measurement into a two-dimensional representation which
is then fed to a convolutional neural network (CNN). Ref. [38] additionally compares the
performance of the GAF with the Markov Transition Field [152] and a Recurrence Plot [153]
and finds that the GAF outperforms the other imaging techniques in the vast majority of
experiments. Ref. [92], on the other hand, arranged hourly consumption readings into two
dimensions by setting the hour of the day as the x-coordinate and the day as the y-coordinate.
The authors found that the optimal size of the first filter amounts to 7 × 7, allowing the filter
to learn weekly correlations.
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A minority of works use a DNN to classify events extracted by a previous detection
stage [77,80,114,116] or to classify the on–off status directly from a single time step [82].
These publications are marked with ’na’ in the column ’Input’ of Table 2.

3.3.2. Features

The active power from the aggregate measurement is the only input for most of the
reviewed works. There are, however, a number of papers that extended the input to further
features: Reactive and apparent power, current, first-order difference of the active power
signal, power factor, the variant power signature, and different time-based features have been
used additionally. A noteworthy case is the input of the aggregate power from multiple neigh-
boring buildings which, according to [107], lead to considerable performance improvements.
Input features of the reviewed publications are marked in the column ’Input’ of Table 2. See
also Section 4.2 for a discussion of the benefits of multiple input features.

3.4. Deep Neural Networks
3.4.1. Architectures Elements

In Table 2, column ’DNN Elements’, we summarize proposed DNN architectures
based on a set of DNN building blocks or elements. Naturally, this attempt can only be a
coarse approximation of the encountered diversity. It still provides a high-level view on
what has been tried out. We mention only original architectures proposed by the authors.
Models from earlier authors or baselines are not listed. As a consequence the column
is empty in several cases, e.g., where the authors compare previous works. Looking at
Table 2, we observe that starting with the year 2018, feedforward elements—in particular
convolutional elements—gained in popularity. These elements are used roughly twice
as much as recurrent elements. In the same time span, advanced DNN elements such as
generative adversarial networks (GAN) and attention were also adapted to NILM.

Below, we give a description of the DNN elements used in Table 2 to describe the
proposed models:

• FF→ Feedforward network, see, e.g., [154]. We use the abbreviation in case a simple
multilayer feedforward network is a major component of the network. It is not used
for dAE, CNNs, or LSTM networks that contain, e.g., only a final feedforward layer
for classification.

• dAE→ Denoising autoencoder [155]. We use the abbreviation for architectures made
up of encoder-decoder architectures. In the context of NILM, denoising AE are used
to separate the appliance’s signal from the rest of the aggregate signal.

• VAE → Variational autoencoder. Special variant of the AE that encodes the latent
variables as distributions [156,157].

• CNN → Convolutional neural network, see, e.g., [154]. We use the abbreviation
for networks that employ CNN layers. s2p, s2sub, s2s, and wn are more detailed
subclasses.

• s2s→ The abbreviation is used for networks that map from an input sequence to an
output sequence with identical length. It is only used if the output of the network is
active power or the on/off state of an appliance.

• s2sub→ The abbreviation is used for networks that map from an input sequence to an
output sub-sequence, i.e., the output length is smaller that the input length. It is only
used if the output of the network is active power or the on/off state of an appliance.

• s2p→ The abbreviation is used for networks that map from an input sequence to a
single output value. It is only used if the output of the network is active power or the
on/off state of an appliance.

• wn→Wavenet [158] inspired architectures. In particular, dilated convolutions and
gating mechanisms are important elements of these architectures.

• att→ This abbreviation subsumes different variants of attention mechanisms. Specif-
ically, ref. [55] used the mechanism defined in [159], ref. [35] employed attention
from [160], and [72] from [161].
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• RNN→ The abbreviation is used for networks that employ vanilla recurrent neural
networks, see, e.g., [154].

• (bi)LSTM→ The abbreviation is used for networks that employ (bidirectional) long
short-term memory cells [162,163].

• (bi)GRU→ (bidirectional) gated recurrent unit [164].
• GAN→ The abbreviation is used for networks that employ elements from generative

adversarial networks [165].
• RCNN→ recurrent CNN [166].
• HMM-DNN→ combination of Hidden Markov Model with a classic feed-forward

network [122].
• VRNN→ recurrent variational neural network [167].

In case different elements have been combined, they are joined with a hyphen ’-’. That
means, e.g., CNN-dAE corresponds to a dAE that includes convolutional layers.

3.4.2. Training and Loss Functions

DNN gradient descent has its own set of hyperparameters such as the type of opti-
mizer, number of training epochs, or early stopping criterion. As these elements are not
specific to the NILM problem, we just mention a few specific points in this section. There
have been several authors that optimized (training) parameters of the proposed networks
by automatic means. For example, grid search [72,92], Hill Climbing [41], and Bayesian
optimization [42,75,90,102] have been employed. [118] investigated different variants of
curriculum learning [168]. In this type of learning, samples are not randomly presented
to the DNN, but organized in a meaningful order, the intuition being that humans learn
by mastering concepts with increasing difficulty. Contrary to this intuition, ref. [118] finds
that easy samples hinder training, and the author used synthetic training data composed
from sets of more than 7 appliance sub-meters.

A key element of DNN optimization is the loss function that guides the optimization
process. The vast majority of works employ either the mean absolute error (MAE) or the
mean squared error (MSE) in case of power disaggregation and the cross entropy loss for
on/off classification. Recent works also investigate alternative loss functions: Quantile
regression [169] was employed by [46,59]. The authors of [59] found that their proposed
loss increased the performance of two state-of-the-art models compared to the MSE loss.
Some works [34,35,39,43] employ GAN loss functions—called ’adversarial loss’ in [35]—
that classify if the output of the regression DNN is a real or fake appliance load curve. This
loss should make outputs more realistic and help especially in case of datasets of limited
size. Finally, ref. [55] introduced a loss composed from four different terms: In addition to
the MSE, a Kullback–Leibler divergence loss, a soft-margin loss, and the MAE are used. To
our knowledge, a systematic comparison of loss functions for DNN-NILM approaches has
not been published.

3.5. Output

With respect to their output, we observe four different dimensions along which
DNN-NILM approaches can be distinguished: A first dimension is the number of time
steps that are disaggregated by the DNN models in a single go, be it a sequence, sub-
sequence, or a single value. This information is available through the abbreviations s2s,
s2sub, and s2p in the column ’DNN Elements’ of Table 2, see also Section 3.4.1. The second
dimension concerns the type of inferred output. With the exception of [70], where location
data (location) are combined with the aggregated power consumption, and [95], where a
DNN infers state changes in the aggregate power (stateChange), the goal of DNN-NILM
approaches is either to infer the on/off state or the energy usage of an appliance. We
mark this information in column ’Output’ of Table 2 with the abbreviations on/off and P,
respectively. Naturally, this dimension is mostly coupled with the third distinction, whether
the learning problem is formulated as a classification or regression task. However, there
are four works [33,61,68,118] where power values are clustered into groups, and the power
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regression problem is recast into a classification task. These references are marked with
Pclass. Lastly, we can distinguish between approaches that learn on a single task and those
learning on multiple tasks simultaneously, i.e., perform multi-task learning. The majority
of approaches train one model for each appliance to be disaggregated. A sizable number of
approaches infer, however, the on/off state or power disaggregation of multiple appliances
simultaneously. These cases are marked with a subscript m in the ’Output’ column of
Table 2. Where multi-task learning is done on different modes, the corresponding outputs
are jointed with an ’&’ in Table 2: [35,63,97,106] trained networks on both on/off and active
power data. Ref. [117] used both active and reactive power of an appliance as target,
and [59] used three targets, i.e., the aggregate power (Ptotal), the appliance power (Papp),
and the difference between the two (Prest). Finally, ref. [46] took multi-task learning furthest
by simultaneously learning on both on/off states and active power of multiple appliances.

3.5.1. Post-Processing

Different variants to process the output from the DNN-NILM approaches have been
proposed in the literature. In cases where the DNN is of type s2s or s2sub and disaggregation
is done by moving the input window a single time step at a time, the network will deliver
n predictions for each time step, where n is the length of the output window. In order
to obtain a single prediction, many authors used the mean, e.g., [14,22,35,89,119] or the
median, e.g., [21,72]. In [21], the authors find that networks underestimate the power of
appliances if activations are only partially in the input window. As a consequence, the
mean also underestimates the ground truth and [21] proposes to use the median instead,
which is less impacted by this problem. As the authors of [39] use a GAN, they only use
the disaggregated signal for which the discriminator outputs the highest probability of
being a true sample.

Some authors note that the models produce noisy output, e.g., in the form of sporadic
activations either too short or too frequent for the target appliance. Ref. [37] filters out
such events with the same approach as for activation detection in the ground truth data.
Similarly, [36] removes all activations of an appliance that are shorter than those found in the
ground truth data. Depending on the metric, the reported improvement ranges from 28% to
54%. Refs. [58,89] go one step further and train a second DNN to suppress spurious activations.
According to [58], the additional DNN leads to “significant performance boosts”.

3.6. Evaluation Metrics

The performance of NILM algorithm is assessed in various ways. The interested
reader is referred to [18,145]: Ref. [18] provides a comprehensive review and discussion
of employed metrics, and ref. [145] proposes a set of metrics to assess the generalization
ability of NILM aglorithms. In the following, we only repeat the definition of the mean
absolute error (MAE) and the F1-score. In the reviewed literature, these were the most
encountered metrics to assess the estimated energy consumption and on/off status of an
appliance, and we use them for our comparison in Section 4.1.

MAE =
T

∑
t

|yt − ŷt|
T

(4)

where the sum goes over T time steps, and yt, ŷt correspond to the measured and estimated
power consumption, respectively. In this publication, we use Watts as the unit for the MAE.

F1 = 2 · P · R
P + R

(5)

where precision P = TP/(TP + FP) and recall R = TP/(TP + FN) with TP, FP, and FN
denoting true positives, false positives, and false negatives, respectively [18].
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4. Discussion and Current Research Gaps

The following sections discuss different aspects of the reviewed literature. Each section
concludes with a paragraph on current research gaps we see concerning the discussed topic.

4.1. Performance Comparison

One of the basic questions that accompanied us throughout this literature review was:
“What is the most promising approach or classes of approaches?” As the last section hints,
there is no straightforward answer to that. Too many degrees of freedom (see Figure 1)
make the approaches differ in so many ways that a comparison based solely on the results
presented in the publications can only give indications. For that purpose, the MAE and
F1 score were extracted from the reviewed publications wherever available. (The data is
available on our GitHub account. The link is provided in the ’Supplementary Materials’.)
These two metrics are the most applied performance measures in case of energy estimation
and on/off state classification, respectively. Figures 3 and 4 each display the best reported
results split up by dataset and appliance. Only results from the observed, unseen evaluation
scenario are given. This scenario was selected as it is closest to an actual application of
DNN-NILM algorithms, see Section 3.2.1. The graphs only include results from approaches
proposed in the corresponding publications: Results from baselines, or approaches from
earlier work that were used for comparison, are not included. Appliances with a single
result in the displayed range are excluded. We observe that the results for kettle and
microwave are overall better and not as distributed as those from the other displayed
appliances. We believe this is because of their simpler nature: Both kettle and microwave
are appliances with only two states whereas dishwasher, washing machine, and fridge (to
a certain degree) have a more diverse load signature.
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Figure 3. Minimal reported MAE for the corresponding dataset and appliance. Only results from the observed, unseen
evaluation scenario have been included. Only approaches proposed by the authors in the corresponding publications are
taken into consideration (i.e., no baselines or models from the state-of-the-art). Results have been split according to the
appliance and employed dataset. Please note that appliances with a single result in the selected range are not shown.
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We caution the reader not to interpret the displayed values as the result of a direct com-
parison under identical conditions. Results have been generated under broadly differing
settings, see Table 2. One key difference is that evaluation data varied strongly between
publications. While results in Figures 3 and 4 are not directly comparable, we try to identify
common elements of successful approaches. For that purpose, we sorted the results for
each appliance (irrespective of the dataset) and took the top quarter of the results. De-
pending on the appliance, a quarter consisted of four to six results in case of the MAE and
two to four in case of the F1-score. We then evaluated the number of times a publication
appears in these results. Those with more than one count are [34,35] (five times), [62] (four
times), and [36,63,97,98] (two times) in case of MAE, and [63] (six times), [118] (three times),
and [36,37,64] (two times) for the F1-score. These publications have been marked in column
’Best’ of Table 2.
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Figure 4. Maximal reported F1-score for the corresponding dataset and appliance. Only results from the observed, unseen
evaluation scenario have been included. Only approaches proposed by the authors in the corresponding publications are
taken into consideration (i.e., no baselines or models from the state-of-the-art). Results have been split according to the
appliance and employed dataset. Please note that appliances with a single result in the selected range are not shown.

Based on these publications, we make the following observations:

• With the exception of [37], who used 60 s intervals, the best results are based on data
with sampling intervals up to 10 s.

• The architectures of [34,35,37,62,98] contain all elements that allow an output neuron
to have a large field of view. Refs. [35,62,98] use dilated convolutions that allow
for an exponential increase in the field of view of deeper network layers, see, e.g.,
WaveNet [158] that served as template in case of [62]. The models from [35,37,62] all
concatenate and process at some stage in the network output from multiple layers
that each have widely varying fields of view. This is called ’scale-awareness’ by [35]
and ’temporal pooling’ by [37]. Ref. [34] adopts the U-net [170], an encoder–decoder
architecture originally proposed for image segmentation.
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• The approaches of [34,35] employ a GAN setup. This means that the network does
not (only) learn based on a static loss function, but it rather exploits the ’feedback’ of a
second network that classifies if the output of the first one is real or fake.

• Four approaches [35,37,63,97] use multi-task learning for network training: ref. [37]
trains the model to classify the on/off state of multiple appliances at the same time,
whereas [35,63,97] simultaneously train their networks to estimate the energy usage
and the on/off state of single appliances. In the latter three cases, this is done with
networks that have one branch for each objective. The final result is then obtained by
combining the branches.

• Refs. [36,37] use very similar post-processing schemes that remove sporadic activa-
tions, see Section 3.5.1. Ref. [36] reports improvements in the range of 28% to 54%
compared to results without post-processing.

We see the following limitations in the previously performed comparison of the MAE
and F1-scores: As already pointed out, results have been obtained through wildly different
procedures. It is also questionable if these metrics are the most relevant, they have simply
been chosen as the ones mostly provided in the reviewed literature. That means also that
publications reporting other metrics do not appear in the evaluation. With these words of
caution said, we still believe the previous observations provide some value.

With respect to the initial question “How does the performance of approaches com-
pare?” and the performed literature review, we identify several challenges worth ad-
dressing by the research community: We observe that the experiments performed in the
reviewed literature are not always well specified with respect to the ’degrees of freedom’
mentioned in Section 3. We hope future works profit from our listing of available options
and specify their decisions clearly. Besides, we see several additional steps at different
levels that could lead to a better comparability:

• Beside the metrics motivated by the intended use case, published approaches should
report a set of standard metrics. Simply based on their availability in the reviewed
literature, we propose to use the MAE and F1-score in case of energy estimation and
on/off state classification tasks, respectively.

• We see a great potential in defining a standard evaluation protocol that defines training
and testing folds for cross-validation of models per dataset. Of course it should respect
particularities of the NILM setting such as the evaluation scenarios, and it would
ideally be in a machine readable form such as proposed for the ExperimentAPI of
NILMTK [23].

• Authors would ideally publish the code for the employed models and experiments
as already done by several authors, see Table 2. Based on that code, retraining for
comparison with new approaches is greatly simplified.

• Beside the model specification as code, trained models could also be released as is
done in the vision community, see, e.g., [171]. We are only aware of the trained models
of [49] that have been publicly released.

• As has already been noted by other authors [19,140], a comparison of NILM ap-
proaches on the same terms is very beneficial for NILM practitioners. In case of
DNN-NILM approaches, we feel that this work can serve as a good basis for such
an undertaking providing a comprehensive overview on the relevant literature and
published code. A Python framework for comparison has already been published
in [23] and applied to the analysis of four DNN-NILM (beside classical) approaches
in [24]. A possible route to stimulate such comparisons would also be to organize
challenges like the one which took place in 2020 [172]. In the computer vision domain,
for example, the ImageNet challenge was a great driver for innovation.

4.2. Multiple Input Features

While the reactive power has already been used in the founding works of NILM [1,2],
most authors take the active power as the only input for disaggregation, see Section 3.3.2.
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Therefore, we raise the question: “Can we find evidence that multiple input features benefit
DNN-NILM performance?”

As can be seen in the overview Table 2, different authors employed alternative input
features. The following authors report results from a comparison of input
features [22,36,89,94,106,107,117]. Ref. [117] was the first DNN-NILM approach we are
aware of that used multiple input features. Unfortunately, these results do not allow
separation of the influence of input features from multi-task learning because the two are
always used in conjunction. Ref. [22] explicitly exploits reactive power (Q). The authors
evaluate the impact of Q on the F1-score within the AMPds and UK-DALE datasets. Over
the investigated appliances, they find an average improvement of around 12.5% in the seen
and 8% in the unseen evaluation scenario. (Average F1-scores for P in seen and unseen sce-
narios are 0.68 and 0.58, respectively.) Interestingly, the reported improvement is small or
negative for purely resistive loads, such as kettle and electric oven. We hypothesize that in
such cases, the reactive power provides no information, but purely noise. Refs. [89,94,106]
all worked with the AMPds dataset. This data set contains measurements from a single
house, thus all results stem from seen evaluation scenarios. Ref. [94] compares two feature
sets with the help of the estimation accuracy: For the combination P and Q versus P alone,
the authors find an improvement of 6%. For the combination P, Q, current (I), and apparent
power (S), the improvement is slightly higher at 7%. (The estimation accuracy in case of
P alone amounts to 0.83.) Ref. [89] investigates the same feature set P, Q, I, S versus P
based on three different performance measures, namely the MAE, root mean square error
(RMSE), and the normalized RMSE. In this work, the improvements with the additional
features are much larger: For all measures, the average improvement is around 40% to 50%.
(The MAE, RMSE, and normalized RMSE averaged over all investigated appliances and
models for P alone amount to 36.7 W, 122.8 W, and 0.75, respectively.) The temperature as a
supplementary feature has been used by [106]. The authors find that the disaggregation of
’heat pump’ and ’home office’ works 3% and 4% better based on the F1-score and estima-
tion accuracy, respectively. (The F1-score and estimation accuracy averaged over the two
appliances in case of P alone amount to 0.87 and 0.91, respectively.) The authors of [107]
find that providing the aggregate electrical consumption from neighbors as additional
features leads to performance improvements of 17% and 31% with and without multi-task
learning, respectively. (The symmetric mean absolute percentage error (SMAPE) for P alone
amounts to 23% and 38% in the respective cases.) Finally, ref. [36] calculates the mutual
information between P, Q, S, I, voltage, the power factor of the aggregate measurement,
and P of the appliance as a feature selection step. Voltage is the least informative feature,
and is therefore dropped for the subsequent evaluations.

Previously mentioned improvements have been calculated from the original values
reported by the authors according to the following formula

Improvement =
Per faddFeatures − Per fonlyP

Per fonlyP
. (6)

where Per fonlyP and Per faddFeatures correspond to the performance (measured in any mea-
sure) of the approach based only on P and additional features, respectively. In cases
where smaller values indicate better performance of a measure (e.g., MAE), we swapped
Per faddFeatures and Per fonlyP to always result with a positive value for improved results.

Based on the results presented, we conclude that features beside P can improve
disaggregation performance. No conclusions about the amount of improvement can,
however, be made, as the spread of the results is quite broad. For the time being, we
can only speculate about possible reasons. It might be a worthwhile investigation to
examine what kind of factors, e.g., architectures, can make the most out of the information
from features beside P. With the exception of those in [22], all results originate from seen
evaluation scenarios. That effectively means that additional features help to estimate the
power usage of a particular appliance. However, it is unclear how much they help to
disaggregate an appliance type, see Section 3.2.1. Non DNN-NILM approaches already
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employed a very broad feature set [13]. Compared to this breadth, DNN-NILM approaches
tested a very limited set of options. It would be interesting to see a systematic investigation
on a broader feature set.

4.3. Multi-Task Learning

If a machine learning model trains on separate but related tasks, this process is referred
to as multi-task learning. For a good introduction and overview on the topic with respect
to deep learning, the reader is referred to [173]. The NILM problem is suitable to be framed
as a multi-task learning problem: The column ’Output’ in Table 2 lists the different variants
that have been employed in the reviewed literature. We asked ourselves: “Can we find
evidence that multi-task learning leads to superior performance compared to single task
learning in the case of the DNN-NILM approaches?”

Based on the literature review, we found the following: Ref. [91] trains a CNN on
the washing machine, freezes the parameters of the convolutional layers, and retrains
afterwards only the final, fully connected layer for other appliances. The authors find that
the results of this approach are comparable to standard training. This finding suggests that
the learned features of different appliances are similar and can be shared between appli-
ances. Simultaneous learning on different appliances could therefore make features more
robust and lower the requirements on the amount of training data. A large improvement
from joint learning on multiple appliances is also reported by [107] and, as was already
mentioned in Section 4.1, four of the best approaches [35,37,63,97] use multi-task learning
for network training. Only the authors of [49] report a general decrease in performance of
multi-task learning models with respect to their single-task counterparts. They propose to
employ a different architecture or share less layers between appliances as a remedy. Due
to the presented observations and the general benefits of multi-task learning presented
in [173], we conclude that multi-task learning is beneficial for DNN-NILM approaches.
As has also been noted by [49], we see the additional benefit of multi-task learning in a
reduced computational burden for edge devices because a major amount of computations
for disaggregation can be shared between several applications.

4.4. Parameter Studies

As visualized in Figure 1, there are many degrees of freedom for DNN-NILM ap-
proaches. In Section 3, we listed the many options for the corresponding aspects that have
already been tried out. Looking at the literature, however, we see a lack of understanding
of the influence of the available options. Therefore, we want to stress the need and value of
parameter studies for future research activities in the DNN-NILM field.

For example, in case of the data sampling rate and window length, several authors looked
at the influence of these two parameters on the models performance, see
Sections 3.2.2 and 3.3.1. There exists, however, no study that jointly investigates these
two tightly connected parameters (maybe even on different datasets and based on dif-
ferent models). Similarly, we see potential in a systematic comparison between differ-
ent normalization (Section 3.2.2), activation balancing (Section 3.2.3), data augmentation
(Section 3.2.4), and post-processing (Section 3.5.1) strategies, as well as loss functions
(Section 3.4.2).

4.5. Applied DNN-NILM

The best results of current DNN-NILM approaches are very promising, see Section 4.1.
However, there are different aspects of relevance for an actual deployment of DNN-NILM
approaches that have not yet been well investigated in the literature. In the following
subsections, we motivate corresponding aspects and subsequently point out connected
research gaps.
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4.5.1. Data Scarcity

For a practical application of NILM, we see one of the main challenges in the scarcity of
labeled data. While this challenge is not specific to DNN approaches, we think that recent
developments in semi-supervised deep learning might be adaptable to NILM and could
then be a great opportunity to tackle the problem of data scarcity for practical applications.
In the following, we will first detail the challenge and subsequently formulate possible
future research directions.

Net2Grid is a company providing NILM services to utilities. In a presentation, they
stressed the point that “accurate NILM requires [...] a lot of high-quality data” [174]. Specif-
ically, the company bases their NILM service on data from hundreds of houses. They also
emphasized the point that machines with different programs or settings exhibit very variable
load patterns and therefore need many observed cycles. The authors of [75] investigate how
the disaggregation error of a DNN-NILM approach depends on the number of distinct houses
used for its training. In agreement with Net2Grid, they find that for the washing machine, an
appliance with a variety of programs, the disaggregation error steadily decreases with each
house added to the training dataset without any sign of saturation until 40 houses, which was
the maximum used for the investigation. Thus, both sources indicate that complex machines
require a large variability in the training data to successfully generalize on unseen data. This
observation is at the core of what we call ’data scarcity’.

These findings indicate that a company that wants to start a NILM service first has to
obtain data from hundreds of houses. A possible source are public NILM datasets including
aggregate and appliance consumption, see, e.g., [18,127] for an overview. While for some
simple appliances these public datasets are certainly sufficient, the data are too restricted
if we want to disaggregate appliances with variable load patterns [75,174]. Furthermore,
appliances such as heat pumps or charging stations for electric vehicles are almost absent
from public datasets. The only alternative is to engage in a measurement campaign
involving hundreds of houses. This is an expensive and time consuming undertaking, as the
metering, appliance-specific sub-metering, and the corresponding infrastructure has to be
installed and maintained. It is also worth noting that, even if large datasets covering a large
variety of appliances would be recorded, new devices come to the market continuously.
This means that the effort for data collection is actually a recurrent one.

As DNNs are particularly data hungry, the problem of a shortage of labeled data has
recently obtained a lot of attention by the research community in the computer vision and
natural language processing (NLP) domain. A promising remedy to the situation is semi-
supervised deep learning [175]. We see a lot of potential transferring these developments
to the NILM domain as unlabeled data—the data obtained from the smart meter—are
relatively easy to access compared to sub-metered ground truth data.

In the reviewed DNN-NILM literature, semi-supervised deep learning techniques have
so far been employed by the following authors: Ref. [103] used the ladder network [176].
The presented results give no clear indication that unsupervised data actually improved the
performance. These results might be caused by the relatively simple DNN. The authors of [66]
trained an autoencoder on unlabeled data to subsequently use the learned embedding in a
supervised training setting. This work was done on aggregate data with 15 min resolution that
naturally led to large estimation errors. Ref. [81] derived their classification approach from
the mean teacher approach [177], while ref. [67] adopted virtual adversarial training [178].
Both works present evidence that the disaggregation performance of the semi-supervised
approaches improves compared to a strictly supervised settings. However, experiments were
only conducted on data from houses already seen during training, and no conclusion can be
drawn about improved generalization on previously unseen houses.

There is an increasing field of newer semi-supervised DNN approaches from the vision
domain ready to be adapted to the NILM problem [175]. A particularly successful [179]
semi-supervised strain of research is called consistency learning [175]. The method’s main
assumption is that a small perturbation or realistic transformation applied to a data point
should not have an influence on the prediction. DNNs are then trained to provide a consistent
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output for an unlabeled data point and its perturbed version. Most recent publications
demonstrate that for image classification it is feasible to get close to the performance of a
supervised approach with one order of magnitude fewer labeled samples [180,181]. While
some of the consistency learning approaches seem to be well adaptable to NILM, there remain
many open questions—to name a few: What type of consistency loss should be used in case
of NILM? What types of data augmentation strategies should be employed? The last question
is of particular interest because [180] demonstrated that the ’quality’ of data transformations
is the key for significant performance gains. While data augmentation was used in various
DNN-NILM approaches, see Table 2, we are not aware of any work that did a detailed
investigation of this aspect.

In summary, we see in the application of semi-supervised DNN approaches many
worthwhile research questions and a great opportunity to tackle the problem of data
scarcity for practical NILM applications.

4.5.2. NILM on Embedded Systems

If one imagines a NILM deployment at scale, the amount of data to transfer, store,
and process becomes an important factor. In the reviewed DNN-NILM literature, different
aspects of such a deployment have been addressed. The work of [93] investigated data
reduction policies: Different sampling strategies for data compression ( 1

4 to 1
20 compression) in

combination with DNN inference are tested. The authors found that the best sub-sampling
policies outperform results with original sampling rates. Another option is to process the data
directly in or close to the electric meter and only relay disaggregated high level information.
That means that the DNN-NILM inference has to work on an embedded system, even though
that can be quite challenging in terms of computational, storage, and energy resources. This
direction has been investigated by [47–49,65,106]: Ref. [106] is to our knowledge the first to
publish the implementation of DNN-NILM inference on an embedded device. Both [106]
and later [65] used for that purpose a Raspberry Pi computer. Ref. [47] uses an efficient
MobileNet [182,183] inspired DNN for disaggregation and compresses it by lowering the
precision from32 to bit floating point (used for training) to 8-bit integer representation by
means of the TensorFlow Lite library. The resulting model was then evaluated with the
Android SDK. The authors report that “disaggregation accuracy deviates up to ≈9.4% from
original disaggregation model, but, on average, remains satisfactory”. Both refs. [48] and [49]
investigate different pruning methods based on the network from [119]. Pruning methods
aim at reducing neurons in the network that contribute little to the final output. The final goal
is to result with sparse networks that have lower storage and computational requirements,
but similar performance compared to the original networks. Both publications found that
networks can be heavily pruned with only a slight decrease in performance: Ref. [48] reports
a reduction of the number of network weights by 87% and [49] reports a 100-fold reduction
in model size and a 25-fold reduction in inference times. Ref. [49] additionally investigates
multi-task learning and vector decomposition as further paths towards efficient computations
in embedded systems.

While the DNN-NILM community has taken first steps towards an implementation
on embedded devices, the corresponding research field for DNNs in the vision and speech
domain is vast, see, e.g., [184]. There remain therefore a multitude of research questions
in this direction. From our perspective, an interesting question would be to see how best
performing approaches (see Section 4.1) could be adapted to embedded devices because
the architectures of these approaches are more elaborate than the ones used by [47–49,106].

4.5.3. 3-Phase Data

In some European countries, such as, e.g., Switzerland, residential power supply
arrives in three phases at the master distribution board (breaker panel) and is then split into
single phases. As a consequence, measurements from the electrical metering infrastructure
are in principle also available on three phases. With respect to a practical NILM application,
this additional information makes the problem at first glance easier to solve, as there are
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on average one third as many devices connected to each phase compared to households
attached to a single phase. However, the challenge comes in the form of multi-phase
appliances such as heat pumps, pool pumps, electrical heat storage radiators, or charging
stations for electrical vehicles. These appliances require NILM algorithm to combine
information from all three phases. When considering an approach that should perform
on any households, the main challenge is that multi-phase devices can be connected in
arbitrary permutations. Thus, the result of the DNN-NILM approach needs to be invariant
to these permutations.

We are not aware of any DNN-NILM publication that works on 3-phase data and
tackles the raised challenge (This might partially be because there are currently only
few datasets with 3-phase information. We are aware of iAWE [185], ECO [140], and
BLOND [186]). The desired permutation invariance is analog to the required rotational
invariance in computer vision: An object needs to be recognized as such independently of
its orientation in the image. This analogy points also to possible future research questions:
Could permutation invariance be obtained by training a DNN with augmented data?
Could the symmetry be directly anchored in the layer of the neural network via Group
Equivariant Convolutions, see, e.g., [187,188]? These are convolutional layers specially
designed to produce the same result for data subject to a group of symmetry operations.
How do these two solution approaches compare to each other with respect to performance
and complexity?

5. Outlook

Looking into the future, we can imagine different scenarios and directions for the
(DNN-)NILM field. With the rapid development of the Internet of Things, we can well
think of future appliances which are aware of their own current (and possibly future)
energy consumption and feature a communication interface to relay this information to
the outside world. In this scenario of energy-aware appliances, NILM would become
obsolete. As this scenario would require a business case for appliance manufacturers
and standards for interfaces and protocols, chances are good that this state will not be
reached in the near future. We believe that the rapid increase of computing power in
edge devices will have a much more immediate impact. Edge nodes will soon be able
to perform DNN-NILM close to the meter without the need to transfer data to a cloud
computing service. The culmination of this trend would be complex NILM algorithms
that run directly on meter hardware, maybe even on the raw high frequency measurement
data. Developing this scenario even further, one could imagine that NILM algorithms
learn and improve on local data. For this to work, the learning problem will first have
to be formulated in a way that the data available on the meter can be used for further
improvements. A standard supervised training approach does not seem to be feasible.
Furthermore, local improvements of the model will ideally also be made available to other
smart meters. This concept of local learning with global exchange of improvements is a
nascent research field called Federated Learning, see [189,190].

6. Conclusions

Summarizing, this publication presents a review on the DNN-NILM literature. The
scope of this review comprises publications that employ deep neural networks to disaggre-
gate appliances from low frequency data, i.e., data with sampling rates lower than the AC
base frequency. Our motivation for the scope is our conviction that plenty of applications
could benefit from NILM, coupled with the observation that low frequency data will most
likely be available at scale in the near future and the enormous success of DNNs in other
application domains. We systematically discuss the many degrees of freedom of these
approaches and what has already been tested and tried out in the literature along these
dimensions. One of the main contributions is Table 2, which gives a structured overview
of the main characteristics of all reviewed DNN-NILM approaches. The review part is
followed by a discussion of selected DNN-NILM aspects and corresponding research gaps.
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We present a performance comparisons with respect to reported MAE and F1-scores and
observed different recurring elements in the best performing approaches, namely data
sampling intervals below 10 s, a large field of view, the usage of GAN losses, multi-task
learning, and post-processing. Subsequently, the benefit of multiple input features and
multi-task learning and related research gaps has been discussed, the need for comparative
studies has been highlighted, and the missing elements for a successful deployment of
DNN-NILM approaches have been pointed out. Finally, we also outline potential future
scenarios for the NILM field. This contribution is currently missing in the literature, and can
therefore be of value. We conclude that there remain many worthwhile research questions
to be pursued.

Supplementary Materials: To facilitate future work based on the data collected for this publication,
we release Table 2 as a MS Excel file. We also provide data and code that was used to generate
Figures 3 and 4. All data and code is available at https://github.com/ihomelab/dnn4nilm_overview
accessed on 11 January 2021.
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