The series “Advances in Intelligent Systems and Computing” contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing such as: computational intelligence, soft computing including neural networks, fuzzy systems, evolutionary computing and the fusion of these paradigms, social intelligence, ambient intelligence, computational neuroscience, artificial life, virtual worlds and society, cognitive science and systems, Perception and Vision, DNA and immune based systems, self-organizing and adaptive systems, e-Learning and teaching, human-centered and human-centric computing, recommender systems, intelligent control, robotics and mechatronics including human-machine teaming, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, Web intelligence and multimedia.

The publications within “Advances in Intelligent Systems and Computing” are primarily proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. An important characteristic feature of the series is the short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results.

** Indexing: The books of this series are submitted to ISI Proceedings, EI-Compendex, DBLP, SCOPUS, Google Scholar and Springerlink **

More information about this series at http://www.springer.com/series/11156
Advances in Human Factors and Ergonomics 2019

AHFE 2019 Series Editors
Tareq Ahram, Florida, USA
Waldemar Karwowski, Florida, USA

10th International Conference on Applied Human Factors and Ergonomics and the Affiliated Conferences

Proceedings of the AHFE 2019 International Conference on Human Factors and Ergonomics in Healthcare and Medical Devices, held on July 24–28, 2019, in Washington D.C., USA

<table>
<thead>
<tr>
<th>Title</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advances in Affective and Pleasurable Design</td>
<td>Shuichi Fukuda</td>
</tr>
<tr>
<td>Advances in Neuroergonomics and Cognitive Engineering</td>
<td>Hasan Ayaz</td>
</tr>
<tr>
<td>Advances in Design for Inclusion</td>
<td>Giuseppe Di Bucchianico</td>
</tr>
<tr>
<td>Advances in Ergonomics in Design</td>
<td>Francisco Rebelo and Marcelo M. Soares</td>
</tr>
<tr>
<td>Advances in Human Error, Reliability, Resilience, and Performance</td>
<td>Ronald L. Boring</td>
</tr>
<tr>
<td>Advances in Human Factors and Ergonomics in Healthcare and Medical Devices</td>
<td>Nancy J. Lightner and Jay Kalra</td>
</tr>
<tr>
<td>Advances in Human Factors and Simulation</td>
<td>Daniel N. Cassenti</td>
</tr>
<tr>
<td>Advances in Human Factors and Systems Interaction</td>
<td>Isabel L. Nunes</td>
</tr>
<tr>
<td>Advances in Human Factors in Cybersecurity</td>
<td>Tareq Ahram and Waldemar Karwowski</td>
</tr>
<tr>
<td>Advances in Human Factors, Business Management and Leadership</td>
<td>Jussi Ilari Kantola and Salman Nazir</td>
</tr>
<tr>
<td>Advances in Human Factors in Robots and Unmanned Systems</td>
<td>Jessie Chen</td>
</tr>
<tr>
<td>Advances in Human Factors in Training, Education, and Learning Sciences</td>
<td>Waldemar Karwowski, Tareq Ahram and Salman Nazir</td>
</tr>
<tr>
<td>Advances in Human Factors of Transportation</td>
<td>Neville Stanton</td>
</tr>
</tbody>
</table>

(continued)
(continued)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Editor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advances in Artificial Intelligence, Software and Systems Engineering</td>
<td>Tareq Ahram</td>
</tr>
<tr>
<td>Advances in Human Factors in Architecture, Sustainable Urban Planning</td>
<td>Jerzy Charytonowicz and Christianne Falcão</td>
</tr>
<tr>
<td>and Infrastructure</td>
<td></td>
</tr>
<tr>
<td>Advances in Physical Ergonomics and Human Factors</td>
<td>Ravindra S. Goonetilleke and Waldemar Karwowski</td>
</tr>
<tr>
<td>Advances in Interdisciplinary Practice in Industrial Design</td>
<td>Cliff Sungsoo Shin</td>
</tr>
<tr>
<td>Advances in Safety Management and Human Factors</td>
<td>Pedro M. Arezes</td>
</tr>
<tr>
<td>Advances in Social and Occupational Ergonomics</td>
<td>Richard H. M. Goossens and Atsuo Murata</td>
</tr>
<tr>
<td>Advances in Manufacturing, Production Management and Process Control</td>
<td>Waldemar Karwowski, Stefan Trzcinski and Beata Mrugalska</td>
</tr>
<tr>
<td>Advances in Usability and User Experience</td>
<td>Tareq Ahram and Christianne Falcão</td>
</tr>
<tr>
<td>Advances in Human Factors in Wearable Technologies and Game Design</td>
<td>Tareq Ahram</td>
</tr>
<tr>
<td>Advances in Human Factors in Communication of Design</td>
<td>Amic G. Ho</td>
</tr>
<tr>
<td>Advances in Additive Manufacturing, Modeling Systems and 3D Prototyping</td>
<td>Massimo Di Nicolantonio, Emilio Rossi and Thomas Alexander</td>
</tr>
</tbody>
</table>
Preface

This book is concerned with human factors and ergonomics in healthcare and medical devices. The utility of this area of research is to aid the design of systems and devices for effective and safe healthcare delivery. New approaches are demonstrated for improving healthcare devices such as portable ultrasound systems. Research findings for improved work design, effective communications, and systems support are also included. Healthcare informatics for the public and usability for patient users are considered separately but build on results from usability studies for medical personnel.

Quality and safety are emphasized, and medical error is considered for risk factors and information transfer in error reduction. Physical, cognitive, and organizational aspects are considered in a more integrated manner so as to facilitate a systems approach to implementation. New approaches to patient handling ergonomics, emergency and operating rooms, healthcare, medical device design, human factors and ergonomics measurement and model validation are included. Recent research on special populations, collaboration and teams, as well as learning and training allow practitioners to gain a great deal of knowledge overall from this book.

Explicitly, the book is organized into six sections that contain the following subject areas:

Section 1 Patient Safety
Section 2 Healthcare Information Systems
Section 3 Healthcare Worker Risk
Section 4 Diagnosis Systems
Section 5 Medical Device Development
Section 6 Aging and Gerontology

Each of the chapters of the book was either reviewed by the members of Scientific Advisory and Editorial Board or germinated by them. Our sincere thanks and appreciation goes to the Board members listed below for their contribution to the high scientific standard maintained in developing this book.
Qammer Abbasi, UK
Patricia Arnold, Germany
Tommaso Bellandi, Italy
Balmatee Bidassie, USA
Fehti Calisir, Turkey
Yoel Donchin, Israel
Achim Elfering, Switzerland
Mahmut Eksioglu, Turkey
Enda Fallon, Ireland
Xin Feng, USA
Mike Fray, UK
Mazin Gadir, UAE
Anand Gramopadhye, USA
Sue Hignett, UK
Erik Hollnagel, France
Jay Kalra, Canada
Sharon Kleefield, USA
Basia Kutryba, Poland
Bruce Byung Cheol Lee, USA
Nicolas Marmaras, Greece
Jennifer L. Martin, UK
Rosângela Miriam Mendonca, Brazil
Kathy Norris, USA
Michiko Ohkura, Japan
Calvin Or, Hong Kong
Lenore Page, USA
Stavros Prineas, Australia
Paolo Trucco, Italy
Jasbir Arora, USA
Gianni Montagna, Portugal
Yi Zhang, China

This book would be of special value internationally to those researchers and practitioners involved in various aspects of healthcare delivery.

July 2019

Nancy J. Lightner
Jay Kalra
Contents

Patient Safety

Towards a Deeper Understanding of Conceptual Models that Incorporate Patient Safety .. 3
Timothy Arnold and Helen J. A. Fuller

An Interactive Device for Reducing Risk of Infusion Therapy and Blood Transfusions ... 16
Nicholas Caporusso

Medical Error Disclosure - A Canadian Perspective in Improving Quality of Health Care .. 26
Jawahar (Jay) Kalra, Maria Gabriela Campos-Baniak, Avani Saxena, and Zoher Rafid-Hamed

Pattern of Postural Sway of Diabetic Peripheral Neuropathy People ... 35
Byungjoon B. J. Kim

Quality Assessment and Management: An Overview of Concordance and Discordance Rates Between Clinical and Autopsy Diagnoses ... 45
Jawahar (Jay) Kalra, Daniel Markewich, and Patrick Seitzinger

Comparative Assessment of the Risk of Manual Patient Handling Between Standard Methods and Job Analysis ... 55
Pier Luigi Pavanelli, Silvio Falco, Giovanni La Valle, Cristiano Roscio, and Giulia Ricciardi

Healthcare Information Systems

Electronic Health Records in Hospitals: Preventing Dosing Errors in the Medication Administration Context 65
Sevgin Hunt and Joyram Chakraborty
Satisfying Product Features of a Dementia Care Support Smartphone App and Potential Users’ Willingness to Pay: Web-Based Survey Among Older Adults ... 77
Robert Chauvet, Peter Rasche, Zavier Berti, Matthias Wille, Laura Barton, Katharina Schäfer, Christina Bröhl, Sabine Theis, Christopher Brandl, Verena Nitsch, and Alexander Mertens

Designing Hospital Wayfinding Systems, Touchscreen Kiosks, Environmental Cues and Mobile Apps: An Evaluation of a Mobile Wayfinding Application ... 89
Christy Harper, Tyler Duke, Andrea Crosser, Angie Avera, and Spencer Jefferies

Determining Patient’s Interest in Patient Portal Use in a Primary Care Clinic to Improve Portal Adoption .. 97
Martina A. Clarke and Kelly C. Karls

The Challenge of Designing New Work Systems Towards Effective e-Health Interventions ... 107
Isabel Duarte de Almeida and Maria João Lima Delgado

Research on the Construction Method of the Hospital Information System Hourglass Model ... 120
Shifeng Zhao, Jie Shen, and Zhenhuan Weng

An Empirical Study of Information Visualization for Decision Support in an Emergency Department Information System 134
Quaneisha Jekins-Penha and Steven Jiang

Healthcare Worker Risk

Are Teachers More Affected by Burnout than Physicians, Nurses and Other Professionals? A Systematic Review of the Literature 147
Myriam Squillaci Lanners

Riad Taha Al-Kasasbeh, Nikolay Korenevskiy, Aikeyeva Alty, and Maksim Ilyash

Low Back Pain and Work Ability Among Thai Nurses 167
Chuliporn Sopajareeya

Understanding the Challenges to the Safe Delivery of Care in the Mexican Healthcare System ... 175
Carlos D. de-Leon Zuloaga, Carlos Aceves-Gonzalez, Elvira Perez Vallejos, Rosa Rosales-Cinco, Alexandra Lang, and Sue Hignett
Contents

Diagnosis Systems

Development of a Sleep Monitoring System by Using a Depth Sensor: A Pilot Study 191
Jangwoon Park, Jungyoon Kim, Jaehyun Park, Alaa Sheta, Christina Murphey, and Dugan Um

Quantitative Evaluation of Pulse Diagnosis Using Capillary Blood Flow of Images 197
Yumie Osada, Fuminori Matsuura, Yoshinori Hirano, Xiaodan Lu, Tomoko Ota, Hiroyuki Hamada, and Noriyuki Kida

Medical Device Development

Finding Health Care Usability and Safety Issues in Consumer Product Reviews ... 209
Helen Fuller and Timothy Arnold

Preventing Chemotherapy-Induced Onycholysis with the Use of an Active Local Cooling Device 219
Muriel De Boeck, Jochen Vleugels, Marc Peeters, and Guido De Bruyne

Multi-frameworks Development for the Medical Device Design Process as a Critical Factor for Innovation 227
Fabiola Cortes-Chavez, Alberto Rossa-Sierra, Elvia Luz Gonzalez-Muñoz, Carlos Aceves-Gonzalez, Paulina Manzano-Hernandez, and Maria Giovanna-Trotta

Research on Sleeping Posture Recognition Method Based on Pressure Sensor ... 235
Huabing Wang and Changyuan Wan

A Guide to Drive Medical Devices Development Through Human Factors Inclusion: Building a Value Proposition for Local Projects .. 245
Ilse I. Reyes, Gloria A. Mendoza Franco, and Ángel L. Rodríguez Morales

Invasive Medical Device for Cardiovascular Surgery ... 254
Alexandra Ene and Carmen Mihai

Aging and Gerontology

Alterations in Thyroid Function Testing with Aging 261
Jawahar (Jay) Kalra, Zoher Rafid-Hamed, and Patrick Seitzinger

The Design Adaptation of the Virtual Assistant Anne for Moderate Dementia Patients and Their Formal Caregivers in Protected Environment Tests .. 270
Vera Stara, Michiel de Jong, Elisa Felici, Daniel Bolliger, Edith Birrer, Viviane von Döllen, Lorena Rossi, and Marcel Heerink
Design and Implementation of Bed-Exit Alarm System for Preventing Elderly Falling ... 280
Ching-Ta Wu and Chien-Hsu Chen

A Grip Force Training and Testing Device for Old People 291
Ze Bian, Shijian Luo, Yufei Zhang, Ping Shan, and Hebo Gong

Optimized Design of Accompanying Smart Car for the Elderly Based on Humanization Design Methods 302
Mengyi Cao, Xingyi Zhong, and Ting Han

Design and Strategy of Senior Tourism Under the Background of Population Aging ... 314
Hongjun Qiu and Linong Dai

Design of Waist Wear Products for Warm-Up Training for the Elderly ... 324
Qian Ji, Xin Ye, and Yiming Zhao

Measuring Ways Research on Public Facilities of the Elderly's Physical Flexibility ... 335
Xing-Rong Wen and Ding-Bang Luh

Author Index .. 345
Aging and Gerontology
The Design Adaptation of the Virtual Assistant Anne for Moderate Dementia Patients and Their Formal Caregivers in Protected Environment Tests

Vera Stara1(\Letter), Michiel de Jong2, Elisa Felici1, Daniel Bolliger3, Edith Birrer3, Viviane von Döllen4, Lorena Rossi1, and Marcel Heerink5

1 IRCSS INRCA-National Institute of Health and Science on Ageing, Ancona, Italy
\{v.stara,e.felici,l.rossi\}@inrca.it
2 University of Twente, Enschede, The Netherlands
m.dejong-1@utwente.nl
3 iHomeLab Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
\{daniel.bolliger,edith.birrer\}@hslu.ch
4 Stëftung Hëllef Doheem, Luxembourg City, Luxembourg
viviane.vondoellen@shd.lu
5 Windesheim University, Almere, The Netherlands
mheerink@windesheimflevoland.nl

Abstract. Dementia has become a major health problem with an equally important economic impact on our society and enabling patients with dementia and their caregivers to improve their quality of life and dignity is a great challenge. A significant solution to meet the challenge, could be the use of Personal Virtual Assistant (PVA). The aim of this paper is to share the know-how reached in the design and adaptation of the Personal Virtual Assistant “Anne” for moderate dementia patients and their formal caregivers. The paper presents the results of the first iteration of protected environment tests in Italy and Luxembourg.

Keywords: Personal Virtual Assistant · User Centred Design · Dementia

1 Introduction

Dementia has become a major health problem with an equally important economic impact on our society: approximately 47 million people have dementia worldwide and this is expected to almost triple by 2050. The cost associated with this disease is estimated to be at 818 billion dollars, and by 2030, this cost is expected to exceed one trillion dollars [1]. Enabling patients with dementia and their caregivers to improve their quality of life and dignity is a great challenge. A significant solution to meet the challenge, is the use of innovative technology. Avatars or Personal Virtual Assistant (PVA) are promising examples of technological solutions with a large potential in this field. PVAs are screen-based entities designed to stimulate human face to face interactions.
conversation skills and thus allow for natural interaction between humans and computer [2]. The extent to which this type of innovation may be able to support people affected by dementia and their caregivers along the progressive nature of this terrible illness, represents a great challenge for the entire scientific community. The changing needs of patients and those who provide care for them force the necessity of appropriate and effective technologies at the different stages of dementia. For example, exiting systems target memory support and self-care for people in the early stage of dementia whereas in the moderate to severe stages of dementia, assistive and safety technology (i.e. motion/fall detectors, environmental sensors measuring elements such as room temperature, smoke/gas/water presence) are mostly needed [3]. Unfortunately, specific studies on the efficacy of virtual agents within the dementia context are rare. Nevertheless, some research has shown significant results: an animated conversational agent can be used as a trusted exercise adviser [4]. People with cognitive impairment seem to engage naturally with a screen agent [5]. Moreover, it is found that virtual agents provide a sense of companionship [6]. The aim of this paper is to share the know-how reached in the design and adaptation of the PVA “Anne” for moderate dementia patients and their formal caregivers, within the Living Well with Anne project.

2 The Living Well with Anne Project

The Living well with Anne project (http://livingwellwithanne.eu/) is co-financed under the Active Assisted Living Joint Programme of the European Commission (www.aal-europe.eu) and the National Funding Agencies of 7 partners out of 4 European countries (the Netherlands, Italy, Luxembourg and Switzerland). The project has started in June 2017 and the duration was set to 36 months. Living well with Anne is based on the AAL predecessor project MyLifeMyWay (http://www.mylifemyway-aal.eu/), and it operates in a promising research field based on new approaches in technical assistance systems and robotics with the focus on seniors suffering from forgetfulness, cognitive impairments and/or the early stage of dementia (Fig. 1).

![Fig. 1. The users interface. Copyright Virtask B.V.©](image-url)
2.1 Component Overview of the Personal Assistant Anne

The LivingWell project features the Personal Virtual Assistant “Anne” that can support the users in all aspects of daily life: communication with the outside world, keeping track of items on the personal calendar, daily structure, medication, reading the news and relaxation (games, music). While the technology in the background is quite complex, for the end-users the PVA is a friendly, human-looking avatar on their screen. They can interact with the PVA with their voice and touch. In this project, the personal assistant is extended with features that meet the changing needs of people with dementia (PwD). Anne will enable PwD to live independently for longer by giving them an easy-to-use, most natural way to interact with assistive technology. Anne is able to learn autonomously from its users and gets to know their personal preferences and needs. The PVA can assist and support PwD and their social environment in such a way that they can be active much longer be active and take part in social life. In addition, as end-users learn to use Anne and increase their autonomy, it is believed that it will have an unburdening effect on their informal and formal caregivers.

Anne works on a Surface Pro tablet under the Microsoft Windows 10 operating system. Currently the following languages are available: Dutch, English, German, Italian, French. Spanish and Portuguese are under development (Fig. 2).

Fig. 2. Screenshots of current available modules that show an example layout. Depending on the abilities of the user, the layout can be different, or the module can be hidden or disabled. The challenges in the design development. Copyright Virtask B.V.©

In the Living Well project, we explore the following question: how Anne can be modified to the requirements of people with dementia in different stages?
Rather than to reinvent the wheel, the project uses on an already developed modular software solution and smartly combining several existing technologies such as language recognition and speech generation, 3D-rendering, adaptive decision control mechanisms etc. Building on the knowledge already attained in building the basic version of Anne, the project will go beyond the state of the art in avatar technology. The objective is to ensure that Anne will be able to adapt to the changings needs of the concerned people as the disease progresses. The new and innovative concept builds upon new functionalities of Anne advancing her in four major areas:

- **Dynamic state and progression analysis:** The avatar will be able to detect the state of the PwD living at home in order to get a close picture on what the person is still can and cannot do. This analysis continues dynamically and will get more precise while Anne learns. But Anne will also be able to detect changes in the behavior and the abilities of the PwD as the disease progresses.

- **Situational context analysis:** While in the previous area, the general abilities of the PwD living at home are analyzed on a more mid-term basis, Anne will also be able to find out more about specific situations and the typical day-to-day living patterns of a PwD.

- **Smart, context-sensitive service provision:** Once Anne knows more about the abilities of the PwD, she may choose the most suited ones among her standard and newly developed functional modules (Agenda, Radio, News, etc.) the most suited ones and decide on which level of complexity they should be provided.

- **Adaptive user interface:** Finally, Anne will be able to adapt her user interface to provide the selected services in a way that still make them accessible to the PwD.

This development requires the close involvement of end-users during the design process in conformity with the User-Centered Design (UCD) approach. A great challenge of the Living Well project is to provide a human-centered perspective that can be integrated in the main development cycles of the system [7]. The active involvement of users and a clear understanding of context of use are the key strengths to overcome the main barriers in applying technology for seniors in general and in particular for people who suffer of dementia.

In the light of this challenge, the research objectives of this particular part of the project are to obtain insights in: (i) how do patients experience the PVA in the stage of moderate dementia? (ii) how Anne can be modified to the requirements of people in the stage of moderate dementia?

3 Methodology

For this study, the method of protected environment tests was used as a phase of the UCD development process. Predefined small test sessions were performed in a safe and familiar environment where the end user met with a caregiver and a researcher for a short time (e.g. an hour or even shorter) to perform a particular activity. Each user interaction between the PwD and Anne was observed, analyzed and documented by the formal caregivers and researchers.
The protected environment tests scenarios were previously agreed between formal caregivers, researchers and technicians in order to establish the needs and requirements (pains and gains). In this way, Anne was experienced by patients with moderate dementia within a controlled setting and under the supervision of their formal caregivers and the risks of exposing PwD to the PVA (e.g. provoking paranoid reactions to the Avatar and leading to aggression behaviors) were mitigated. To supplement the observations, formal caregivers were interviewed at the end of each session of test using a semi-structured list of questions. In accordance with Preece et al. [8], our questions are conforming to the usual usability goals like effectiveness, efficiency, safety, utility and learnability. The interview included the following statements (Table 1):

Table 1. The semi-structured list of questions

<table>
<thead>
<tr>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Did the tool meet the predefined expectations? Why (not)? If not: what should be changed?</td>
</tr>
<tr>
<td>2. Is this tool useful in each stage of dementia?</td>
</tr>
<tr>
<td>3. On the basis of this experience, do you think that the system is useful in this specific stage of dementia?</td>
</tr>
<tr>
<td>4. Do you think that this tool can be used by the patient without the caregiver’s supervision?</td>
</tr>
<tr>
<td>5. If not, what kind of changes will be necessary to adapt Anne for the needs of this stage of dementia?</td>
</tr>
<tr>
<td>6. What kind of behaviors did you recognize in the target during the interaction with Anne?</td>
</tr>
<tr>
<td>7. Do you think that these behaviors represent positive, negative or neutral feelings in the subjects?</td>
</tr>
<tr>
<td>8. Do you think that Anne could have some benefits/advantages on the target?</td>
</tr>
</tbody>
</table>

The protected environment tests were performed in two different settings:
- In Italy, 5 female patients with moderate dementia, 2 formal caregivers and 2 researchers working at the Alzheimer Daily Center of INRCA were involved in different iterations;
- In Luxembourg 1 female patient with dementia, 2 formal caregivers and 1 researcher were involved in the requirements session. Additional patients will be involved in the testing of the consequent iteration of the protected environment tests.

4 Results

This section provides the outcomes of the participants’ interactions with the PVA. The results provided are the combined notes of the formal caregivers and researchers in Italy and Luxembourg.
4.1 Protected Environment Tests in Italy

Formal caregivers, researchers and technicians agreed to develop and observe two specific requirements in the Italian setting: prayers and the quizzes. These two functionalities respond to the general need of keeping the patients calm and relax and in parallel involve them in entertainment activities that can stimulate their procedural memory. The PVA was evaluated with the PwD in a setting familiar to the participants, at the day care centers where they are frequent visitors.

From a qualitative point of view, a result of the observations was that the older adults at no point exhibited fear, misunderstanding or inconvenience when seeing the avatar on the screen or, most importantly, when the avatar spoke to them directly. Moreover, nobody withdrew from the test. Another result to underline is that PwD freely spoke to her. The sample group responded verbally to the avatar but they did not use the touch control.

The interviewed informal caregivers recognized the potential of the PVA as a tool for their daily activities. For example, for them it appeared clear that the prayer evoked the procedural memory and acted as a “mantra” and the PwD seemed to feel soon comfortable. Nevertheless, the formal caregivers were strongly convinced that the use of the PVA is only useful for this stage of dementia if controlled by the professional staff. The proactivity of the avatar emerged as the most important aspect to improve the next iterations. The users need to experience the personal assistant as a companion. Other suggestions coming from the interviews put the attention on the leisure/games functionalities and the need to maintain the residual cognitive ability of PwD fostering cognitive training by means of painting pictures, paying quizzes and puzzles, reading books and listening to stories, and music (mainly classical).

All these improvements are being implemented for the second iteration of protected environment tests.

4.2 Protected Environment Test in Luxembourg

In Luxemburg Formal caregivers, the researcher and technicians agreed to develop and observe one specific requirement of the basic Anne: the puzzle. One lady with intermittently medium dementia (temporary loss of memory and cognitive functions), together with 2 of her formal caregivers at and 1 researcher, tested the basic Anne as she is currently being used by older adults without issues of dementia. The PwD quickly focused on the games section and in particular the puzzle because she already does puzzles as a means of exercising her memory and cognitive abilities. The problem she encounters currently is that when she does puzzles in the Day care Center, there is always a member of staff at hand to help and encourage her but at home, she gets too quickly frustrated to play. As she only attends the Day Care Center twice a week, the benefits of this activity are limited. Both the PwD and her caregivers are convinced that if Anne could take on the role of supporting and encouraging the PWD at home, she would be able to play a little every day and thus maximize the benefits on her memory and other cognitive abilities and thus maybe even slow down the development of her dementia.
In the post test interview, the formal caregivers expressed the belief that within the 10 SHD Day Care Centers, a large number of their PwD patients could benefit of such a development. The following requirements were identified:

- The Puzzle needs to be simplified (cut into simple shapes) and provide several choices of complexity in order to insure that the Puzzle can be adapted to the PwD with severe cognitive problems while still challenging those who are still more able. For example, the client tried to play the normal puzzle and failed. Client herself said that the curly complex shapes made it difficult for her. The formal caregiver said that if we oversimplify, then other clients may get bored. So they expressed the need to have a choice of difficulty to meet the needs of all their clients and help them to challenge themselves.

- The pictures used need to be relevant to the PwD’s life experience (e.g. pictures of Luxembourg or their country of origin, pictures of their Day Care Center building/bus/staff, pictures of their home or their family members).

- Anne needs to actively invite and encourage the PwD to play and provide choices on the level of difficulty.

- Anne needs to notice when the PwD has difficulties completing the Puzzle and offer appropriate help and/or offer to reduce the level of difficulty.

- Anne has to actively encourage and complement the PwD throughout the session and after each game.

These and other specifically designed features are being implemented to be tested in the 2nd iteration in the protected environment tests which will include other PwDs attending the SHD Day Care Centers.

5 Discussion

The goals of this study were to find answers to the research objectives introduced in Sect. 2.1.

5.1 How Do Patients in the Stage of Moderate Dementia Experience the PVA?

PwD and their formal caregivers enrolled in this study were positive regarding the PVA. All the participants interacted with Anne playing games, quizzes or praying with her. No problem behaviors (i.e., verbal, physical, and overall agitation), were observed, neither patients withdrew from the tests. This data suggested that people with moderate dementia can be engaged in interactions with a PVA. This results confirm the state of the art in the field [9–13].

However, patients experienced difficulties in using a touchscreen and navigating the different applications of Anne. This convinced the formal caregivers in Italy that Anne could be a useful tool for their daily working activities but that their patients could not use it independently. The caregivers in Luxembourg agreed that the daily living activities of the current Anne (e.g. Agenda, medication, video call…) were too
difficult for PwD to use independently at home. This is in line with recent researches that shown how the PwD needed permanent help and prompting while using natural user interfaces [14, 15]. However, the staff thought that once adapted appropriately, the Day Care Centre attendees with mild to moderate dementia could continue to play the games (e.g. puzzles) independently at home with Anne mimicking the support given by the formal caregivers.

The results showed very clearly the importance of personalized solutions: the design adaptation was conducted in close collaboration with the care organizations which provide daily assistance to the patients both in Italy and Luxembourg. This participatory strategy allows for easy adaptation and consequently helps to match the needs of future beneficiaries with the proposed technology [16, 17].

5.2 How Anne Can Be Modified to the Requirements of People in the Stage of Moderate Dementia?

In software design for PwD, user centeredness is crucial. User-centric design (UCD) implies developing in small steps, iteratively testing new versions with the end-users. This is only possible in a software environment where it is very easy to implement changes to the look-and-feel, without having to adapt many back-end functions, databases etc. We therefore decided to use a simplified version of the Anne software on stand-alone systems without backend integration, where we could provide software versions tailored very specifically for each protected environment test, without having to adapt many back-end functions not directly visible for the user. For each protected environment test, the researchers, carers and developers collaborated closely to design the test, to install and perform it. The development cycles were shortened further by creation of mockup images before implementing software. For installation and support of the test computers, direct remote access for the developers proved very useful. From the results of all these very specific tests and software versions, the following general results can be extracted for an Anne version suitable for PwD:

- Encouragement: Anne should encourage the user to continue if he/she has succeeded in doing something, has finished a subtask or done a step towards a goal.
- Immediate feedback: Whenever the user interacts with Anne, immediate feedback should be given, e.g. a visual effect when touching an active element on the screen, or an audible feedback when Anne has heard a speech command. This is a common truth for all user interfaces, but for PwD it is crucial.
- Give hints: When the user is stuck in a task, Anne should give hints or make suggestions what to try or what next step could be possible.
- Simplify screens to the absolute minimum: The PwD should not be confused with visual elements that are not important for the current task.
- Personalization: Anne should be personalizable very easily by the carers, not only to the overall wishes of the PwD (e.g. what modules should be visible in general), but also depending on current strength of the PwD, as this can vary from day to day. As the Anne software knows the interaction patterns of the user, it should support
the carers in this configuration process by recommending simplification possibilities. The associated machine-learning capability of Anne opens many research questions and, if proved feasible, even possibilities that future versions of Anne could self-adapt their user interface, based on the current condition of the PwD.

5.3 Limitations, Conclusion and Future Steps

While this study was limited by its small sample size, gender homogeneity (only females were included in the group) and very low ICT skills, its intent was to develop some specific features for the use of people with different stages of dementia and associated cognitive problems and pave the way for future studies of how PVAs can be adapted to fit the different stages of dementia. It is to underline that current PwDs had generally little experience with mobile technology before they became affected by dementia.

Nevertheless, future steps are needed. The first step is to conduct methodologically sound scientific researches in the community dementia care and support. This could lead to the urgent proof of the cost-effectiveness of such devices. The second step is to study in depth what are the factors that can influence the deployment of these technologies. In this respect, it could be very interesting to know if a participatory design strategy is the key to sell products to PwD but also to the caregivers (informal and formal) who will recommend or even buy the product for the PwD asking themselves “what is the added value for me?” In the future, interaction with technology may become less of a problem for PwDs. This increased IT literacy will open the way for broader application of ICT with PwD in a more severe stage.

Acknowledgments. This study is part of the Living well with Anne which was co-financed by the EU (Active and Assisted Living Programme, AAL-call-2016-102), the national funding agency of Switzerland: State Secretariat for Education, Research and Innovation SERI; the Italian Ministry of Health; the Luxembourg Fond National de la Recherche (FNR) and the Netherlands Organization for Health Research and Development (ZonMw). The partner coordinator of the LivingWell project is Virtask that is the main developer of Anne under the Copyright Virtask B.V. ©.

References