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Abstract. Activity recognition mandates complex sensor fusion pro-
cessing. Many contributions in the literature focus on improving the
recognition accuracy of a limited set of activities or the efficiency of the
algorithms. However, there is little work on how to dynamically adapt
the activity recognition techniques when human activity goes beyond the
observational and functional borders of one application-specific person-
alized assistance system. We present tool support to model transitions
between activities, and a modular distributed framework of human ac-
tivity recognition components with support for analyzing resource and
recognition trade-offs for different deployments and configurations.

Keywords: Behavior and activity recognition, smart home and health

1 Introduction

The recognition of human activities based on various environment/user aware
sensors and associated context information underpins the user-centric paradigm
of Ambient Intelligence (Aml). Recent advances in the field of micro-electronics
have unfolded the possibility of integrating multiple miniature, cost effective
sensors along with standard communication and processing units into single
sensing modules that can be effortlessly carried by the user or easily integrated
into existing and new construction facilities.

A prerequisite to developing truly supportive and personalized systems is
being able to recognize and anticipate typical human behavior and intent in a
variety of different contexts [7, 3]. However, the unpredictability of human behav-
ior, the unanticipated circumstances of execution and a growing heterogeneity
of future operational environments impose significant development challenges.

In this work, we focus on personalized assistance systems, with examples of
domain-specific informational assistance system families including access systems
of office buildings, automatic accounting of working time, managing medicine
prescriptions and distributions in hospitals, etc. The biggest challenge is how-
ever in transitioning and information exchange between those assistance systems



when different activities need to be recognized. These recognition techniques
might rely on the same sensors or algorithms (on different sensors), but both
may need to be fine-tuned at runtime to the new context. Therefore, we need
mechanisms to transfer this meta-information from one application to another
one covering different activity subsets. Our answer to this challenge is a frame-
work that relies on (1) hybrid behavior modeling that links typical activities in
a given situation with different recognition techniques and on (2) an adaptable
and modular distributed framework that optimizes the processing and commu-
nication of the sensor data in a way that respects the resource constraints of the
software and hardware components involved.

2 Related work

A detailed review on the state-of-the-art on activity recognition [2, 3,8, 4] is be-
yond the scope of this paper. As our experiments focus on resource trade-offs, we
mainly highlight works that looked at device and system energy efficiency as a
key concern. A first approach [15] looks at selecting the proper sensors. Accurate
user activity prediction needs continuous sampling and the authors propose a
method to select an optimal set of sensors at run-time. A similar approach was
suggested in [9], arguing that certain sensors are more power consuming than
others, with the authors favoring dynamically switching on certain high-cost sen-
sors. Another approach is to adapt the sampling frequency. [13] demonstrates a
non-linear relation between sampling frequency and energy consumption espe-
cially when frequency domain features (e.g. entropy) are being calculated. It also
suggests activity dependent optimal sampling frequencies for mobile based ac-
celerometer sensing, and adapting the window size as the authors found a linear
relation between window size and energy consumption on mobile based activity
recognition. One can also adapt the features being extracted and selected from
the sensor data stream. [1] extensively studied the influence of selected features
on classification accuracy and recall for wearable sensors (using 5 accelerome-
ters) and concluded that sometimes fewer features can be more efficient without
compensating classification accuracy. Communication efficiency can also signif-
icantly impact power consumption, as accelerometer based activity recognition
requires high precision data and hence high sample frequencies (up to 100Hz).
Techniques to optimize the communication and processing of large amounts of
data for wearable and other wireless sensors was the research objective in [12,
11, 6]. Our work focuses on analyzing the trade-offs between all these concerns.

3 Smart home and health motivating use cases

In our activity recognition experiments we compare two [Anon EU proj] use
cases taken from the smart home and smart health domain. A first activity we
alm to recognize is taken from Ambient Assisted Living scenarios, i.e. detecting
a fall [10,14, 5]. The first technique only uses a triaxial accelerometer running at
50Hz and looking for patterns of interest through continuous feature extraction
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Fig. 1: Activity transition modeling tool (a) and architectural overview (b)

and selection using a high pass FIR filter to take out the gravity component
as a fall is characterized by a dynamic acceleration in a small time window
(usually less than a second). Our second approach combines the accelerometer
with a barometric pressure sensor [Anon ref]. A sudden acceleration triggers a
sampling of the pressure sensor to detect the current altitude. After a predefined
or automatically calculated time delay, another sample is taken. If a significant
difference in height is detected, we assume the person has fallen and was not
able to get up. This technique does not require complex feature extraction from
the accelerometer and pressure sensors.

We use the same accelerometer in a personalized diabetes assistant [Anon
ref] to track the exercise level of physical activities and offer decision support on
medicine intake based on past occurrences. We analyze the sensor data stream
for activities like walking and running to estimate the calories consumed. This
requires feature extraction and selection in both the time and the frequency
domain. Other differences with the previous use case are that data should be
stored for future reference and comparison, the sampling rate is lower, and the
sliding window for signal analysis is several seconds long for better accuracy.

4 A multiple applications approach in behavior modeling
and activity recognition

Each of the feature extraction and analysis building blocks are developed as
separate components that can be deployed on a sensor mote or mobile running
our middleware [Anon ref]. In general, the overall distributed architecture is
depicted in Figure 1(b). The set of sensors, filters, aggregators, classification and
learning components can be deployed, composed and configured dynamically at
runtime, depending on the activities to be recognized and corresponding resource
trade-offs for wireless communication, computation and memory.
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Fig. 2: Two deployment scenarios for feature extraction and selection components

4.1 Modeling and use of contextual domain knowledge

Many works focus on a limited set of activities and validate the accuracy of their
approach with the implicit assumption that the activity of interest is taking
place. One hardly finds numbers about false positives or false negatives. In our
approach, we instead use the cognitive loop in our architecture (see Figure 1(b))
to infer the most probable activities given the current time and location and
initiate the corresponding activity recognition techniques. We explicitly consider
situations where techniques could lead to false positives, etc. For example, the fall
detection with the barometric pressure might detect a false positive when going
down the stairs, because with each step the accelerometer triggers the pressure
sensor and the latter detects a lower altitude. However, one can also fall down
the stairs. All of these interrelationships between different kinds of contexts
and activities and corresponding recognition techniques are modeled with our
Situation Studio [Anon ref]. This tool (see Figure 1(a)) borrows concepts from
workflow modeling languages, and represents situations that evolve from one
to the next through constrained sequential and parallel transitions. For each
of them, we identity the contextual boundaries, the likelihood of activities of
interest, the relevant contextual events, and the recognition schemes available.

4.2 Trade-offs with explicit and implicit interaction

Recognizing activities of daily living can be based on data acquired through
explicit or implicit interaction with the user. The decision on which approach
to pursue is based on the classification and recognition accuracy of the corre-
sponding technique, and on the resource constraints of the feature extraction
and selection components for an optimal deployment. For example, sampling at
100Hz on a triaxial accelerometer and transmitting the raw data to a gateway
base station for further processing will incur minimal computational overhead,
but will be very expensive from a communication point of view (about 10MB per
hour). By carrying out some of the data processing and analysis on the sensor,
the amount of communication will be reduced. See the two deployment scenarios
in Figure 2. Obviously, from a power consumption perspective there are various
trade-offs to be investigated for an optimal deployment.
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Fig.3: Sampling rate vs. recognition (a) and performance (b) on the SunSPOT

5 Experimental evaluation

We implemented two use cases: (1) fall detection and (2) step counting, and de-
signed the activity recognition building blocks using a modular component based
approach to simplify their distributed deployment. Each of these components has
been profiled on various platforms. In our experiments, we used the SunSPOT
sensor and an HTC Android mobile phone for profiling. We analyzed for each
component on each platform the trade-offs of sampling frequency against:

. Recognition accuracy

. Computational complexity
Communication overhead and latency
. Power consumption

. Size and memory consumption
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Similar analyses were carried out for trade-offs against the size of the slid-
ing window, etc, but due to space considerations, we only provide in Figure 3
the results of the first two trade-off analyses for the step-counting components
(features and feature classifiers) all running on the SunSPOT sensor. The figure
shows both trade-offs of interest, i.e. (1) recognition rate, to compare different
algorithms and configurations (e.g. size of sliding window and use of certain fil-
ters), and (2) performance impact, to decide which components to deploy and
on which platform (computation vs. communication trade-off). Other trade-offs
— also not shown here — investigate scenarios with all the processing done on
a gateway and intermediate deployments to compare the network overhead and
power consumption vs. the sampling frequency. These kind of trade-offs help us
to find Pareto optimal deployments and configurations for activity recognition.

6 Discussion and future work

In our work, we are not necessarily aiming to improve the recognition rate for
certain kinds of behavior and activities with complex algorithms. Rather, we
are interested in finding the trade-offs between different human activity recogni-
tion components for feature selection, extraction and classification and (1) their



recognition rate and (2) their resource impact for distributed deployments. We
briefly discussed our Situation Studio tool support to model activity transitions
and contextual background allowing us link that with possible recognition tech-
niques. The techniques are implemented as modular software building blocks
which can be dynamically configured, composed and deployed on our compo-
nent based middleware platform that runs on sensors, smartphones and backend
systems. The effects of deploying these components are profiled on each of these
platforms, which helps us to find trade-offs for a distributed deployment of these
component considering both recognition accuracy as well as the performance
impact. As future work, we will investigate metrics for analyzing the influence
of contextual background knowledge, the non-intrusiveness with explicit vs. im-
plicit interaction.

References

1. L. Atallah, B. Lo, R. King, and Guang-Zhong Yang. Sensor positioning for activity
recognition using wearable accelerometers. Biomedical Circuits and Systems, IEEE
Transactions on, 5(4):320 —329, aug. 2011.

2. A. Avci, S. Bosch, M. Marin-Perianu, R. Marin-Perianu, and P. Havinga. Activity
recognition using inertial sensing for healthcare, wellbeing and sports applications:
A survey. In ARCS Workshops, pages 167-176, 2010.

3. A. Agztiria, A. Izaguirre, and J. Augusto. Learning Patterns in Ambient Intelligence
Environments: A Survey. Artificial Intelligence Review, 34(1):35-51, June 2010.

4. L. Chen and C. Nugent. Ontofarm: An ontology-based framework for activity
recognition and model evolution. ERCIM News, 2011(87), 2011.

5. M. Kangas, A. Konttila, P. Lindgren, I. Winblad, and T. Jamsa. Comparison of
low-complexity fall detection algorithms for body attached accelerometers. Gait €
Posture, 28(2):285-291, August 2008.

6. M. Keally, G. Zhou, G. Xing, J. Wu, and A. Pyles. Pbn: towards practical activity
recognition using smartphone-based body sensor networks. In Proceedings of the
9th ACM Conference on Embedded Networked Sensor Systems, SenSys ’11, pages
246-259, New York, NY, USA, 2011. ACM.

7. R. Kelley, C. King, A. Ambardekar, M.N. Nicolescu, M. Nicolescu, and
A. Tavakkoli. Integrating context into intent recognition systems. In ICINCO
(2), pages 315-320. INSTICC Press, 2010.

8. E. Kim, S. Helal, and D. Cook. Human activity recognition and pattern discovery.
IEEE Pervasive Computing, 9(1):48-53, January 2010.

9. T. Miyaki, J. Czerny, D. Gordon, and M. Beigl. Energy-efficient activity recognition
using prediction. 2012 16th International Symposium on Wearable Computers,
0:20-36, 2012.

10. N. Noury, A. Fleury, P. Rumeau, A.K. Bourke, G.O. Laighin, V. Rialle, and J.E.
Lundy. Fall detection - principles and methods. In FEngineering in Medicine and
Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the
IEEEFE, pages 1663 —1666, aug. 2007.

11. L. Wang, T. Gu, H. Chen, X. Tao, and J. Lu. Real-time activity recognition in
wireless body sensor networks: From simple gestures to complex activities. In
Embedded and Real-Time Computing Systems and Applications (RTCSA), 2010
IEEFE 16th International Conference on, pages 43 —52, aug. 2010.



12

13.

14.

15.

C. Wren and E. Tapia. Toward scalable activity recognition for sensor networks.
In LoCA, pages 168-185, 2006.

Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and K. Aberer. Energy-Efficient
Continuous Activity Recognition on Mobile Phones: An Activity-Adaptive Ap-
proach. In 16th International Symposium on Wearable Computers (ISWC), 2012.
X. Yu. Approaches and principles of fall detection for elderly and patient. In
e-health Networking, Applications and Services, 2008. HealthCom 2008. 10th In-
ternational Conference on, pages 42 —47, july 2008.

P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and
G. Troster. Activity recognition from on-body sensors: accuracy-power trade-off
by dynamic sensor selection. In Proceedings of the 5th European conference on
Wireless sensor networks, EWSN’08, pages 17-33, Berlin, Heidelberg, 2008.



