
UPnP in Integrated Home- and Building Networks
Rolf Kistler, Stefan Knauth and Alexander Klapproth

Lucerne University of Applied Sciences and Arts, CEESAR
Technikumstrasse 21, 6048 Horw, Switzerland

{rolf.kistler, stefan.knauth, alexander.klapproth}@hslu.ch

Abstract— Classic building automation systems have shown
that networks of seamlessly integrated devices add true user
value to commercial as well as residential building environ-
ments. They may positively influence factors such as energy
efficiency, flexibility, security and comfort. But these benefits
are not convincing enough, if the handling of such networks is
complex and acquisition and engineering costs are high. Ideally,
the integration of a new device happens without any effort
spent on commissioning. Once integrated, devices and services
must be easy to use for different users. The UPnP (Universal
Plug and Play) protocol suite is a good choice to address
these topics. It offers plug and play capabilities and comes up
with a standardised interface to control devices. It’s powerful,
but it cannot fulfil all the requirements needed, especially in
commercial buildings. This paper explores lacks and drawbacks
of UPnP, discusses possible additions and introduces CARUSO,
an architecture implementing the proposed mechanisms.

I. INTRODUCTION

Networks of connected devices become increasingly pop-
ular. Today, a modern building environment may well host
independent networks for automation, IT, telecommunication,
security & safety, multimedia and even domestic appliances.
There is the vision of having one integrated network in which
all these different networks and their devices work seamlessly
together. While such a network opens the field for new dis-
tributed applications, it must keep management overhead and
operational costs low. One of the most impressive examples of
what a standard network protocol can achieve is TCP/IP. And
although many of today’s technologies adoptable for buildings
have their strong reasons to exist, trends indicate that TCP/IP
will finally play a major role in a truly integrated solution.

UPnP, which bases on TCP/IP, is a widely accepted, pow-
erful and yet simple approach to connect and control internet
gateways and multimedia devices in homes. The UPnP forum
is supported by over 800 members across the industry. The
Digital Living Network Association (DLNA) [1] has chosen
UPnP as their means to easily connect devices from leading
IT, consumer electronics and mobile device manufacturers.
Although UPnP initially targeted devices in private homes,
studies and prototypes [2] [3] [4] indicate that its core mech-
anisms can also be adopted for commercial buildings. The
UPnP device architecture [5] covers IP addressing, device and
service discovery, description, control, eventing and presenta-
tion. On top of it, the UPnP forum has developed specifications
for standardised device classes, the ”Device Control Protocols”
(DCPs). A DCP defines a common interface for a class of de-
vices allowing to easily handle UPnP DCP compliant devices

from any vendor. DCPs have been defined for media servers
& renderers, printers, internet gateways, HVAC, lighting etc.

UPnP solves a lot of problems. However, looking at the
requirements of a solution for both home and commercial
building domains, some of them still persist. During the course
of this paper, additions to UPnP are listed, discussed and for
each of them a proposal is made. The implementation is part of
the CARUSO project [6], which seeks to unify the supervision
and control of networked devices in buildings.

II. UPNP ADDITIONS

During the development of UPnP devices, one gets aware
of its benefits and drawbacks. Some have been identified by
forum members [7] and new specifications were added. We
found that the drawbacks can be overcome with additions and
extensions that don’t break the UPnP standard. The CARUSO
project currently investigates the following additions:

• Easy network access. UPnP assumes that all devices and
Control Points are part of an IP network. ”Control Point”
(CP) is the UPnP term for entities used to control UPnP
devices. But getting into the network is often a problem.

• Large network sizes. For discovery, UPnP sends chatty
IP multicast messages. IP multicast does not scale very
well on big networks.

• Low bandwidth actions. UPnP actions are transported
via HTTP/SOAP telegrams. Turning on a light may result
in hundreds of bytes of bidirectional network traffic.

• Users, access rights and security. The UPnP device
architecture has no concept of a user. It’s not in the scope
of UPnP to define and manage users. There is no session
concept and all devices and services are exposed without
restriction. As for authentication and encryption, UPnP
relies on the underlying IP network.

• Sophisticated dynamic user interfaces. Besides of a
hyperlink to an optional presentation page, UPnP does
not describe the user interface of a device.

• Smart services across devices and networks. UPnP
services are device-centric. But to take full advantage of
an integrated network, services will have to act across
several devices. What’s more, UPnP is not designed for
the Internet. But it might be interesting to have services
contributed from external providers via the WWW.

III. ARCHITECTURE AND IMPLEMENTATION

A. Network topology and infrastructure
The following considerations assume that all controllable

devices can be seen through UPnP interfaces. Integration of



2

Fig. 1. The network structure with servers separating CPs and devices.

non IP devices through smart gateways and UPnP proxies have
been investigated in other projects [2].

The network topology greatly affects the characteristics of
the overall system. CARUSO separates the Control Points
(CPs) from the devices. Although UPnP is a peer-to-peer
technology and ideally, no additional infrastructure should be
assumed, a server divides between the control network and the
device network (Fig. 1). There are no modifications made to
neither CPs nor devices. So if there is no server, UPnP runs
as usual, but without the mentioned additions.

All CP/Device communication flows through a hardware
server, although not necessarily through the same. To keep
the multicast UPnP network scalable, there can be more than
one of these servers, segmenting the whole network. The
servers themselves are connected via an Ethernet backbone and
present themselves as UPnP devices. That makes it possible
to discover them. Traffic in the backbone is cut down as
the ordinary UPnP multicast traffic does not leave the local
CP/Device networks. To control a device that is not present
in the local CP/Device network, the CP sends a UPnP search
message to its local server, which forwards it to the other
servers. These will now answer in the common UPnP fashion
with the devices connected to their local networks matching
the search pattern. UPnP allows for specific searches. To
prevent huge network bursts after a search, the search area
is restricted (e.g. search for ”all devices” will not be allowed).
Further, there is a server parameter, specifying the number
of answers forwarded after a search message. What it all
boils down to is, that the feature of UPnP to detect new and
leaving devices ad hoc is restricted to local networks. But
it’s possible to find and control all devices in the network
through an explicit search for them. The usage of the standard
UPnP search mechanisms prevents us from defining new
protocols between the server components. For situations in
which bandwidth is limited, a UPnP compression algorithm
can reduce traffic between two aware network elements by a
factor of about 5 [8].

Whether there is one of those servers for the whole building,

one on each floor or one in every room, depends on the
specific requirements. Typically, such a server consists of a
small embedded PC running the OSGi framework [9]. The pro-
posed additions are modularly implemented as OSGi bundles
installed on each server. The complementary UPnP and OSGi
technologies are ideally suited for such environments. The
OSGi Alliance considered this when it included the ”UPnP
Device Service Specification” into the OSGi Service Platform.

B. Security and User Access

A network which interconnects devices of a building raises
the security question. There is the legitimate fear of a user
bringing down a whole building from the lobby with his
mobile phone. While newer technologies such as ZigBee inte-
grated a strong security concept in their initial design, the main
source of UPnPs critics was its lack of security ceremonies.
A flaw in Microsoft’s UPnP implementation encouraged this
even more. The UPnP forum delivered the missing DCPs in
addition in form of ”Device Security” and ”Security Console”.
Device security secures a UPnP device while the console
provides access to secured devices and manages access rights.
Unfortunately, these DCPs came much later, are optional and
not very easy to understand and implement. Most of the UPnP
devices today ignore them. Well, in home environments, secure
light switches may not be an important feature. And even in
commercial buildings, passwords are often transmitted as plain
text and access mechanisms can be overcome with common
field bus tools. Still, our solution needs a concept of users and
a way to protect the building from unwanted access.

In CARUSO, the user approaches the system with a WLAN
enabled mobile device. The first hurdle is to connect this
CP to the network. There is a risk that configuration issues,
such as acquiring and entering network keys, will distract
many from using their client. If an unsecured network is not
an option, there is the way of applying emerging NFC and
RFID technologies to increase usability. If a new user enters
a building, she just holds the client near an NFC access point
(like a badge) and immediately enters the local CP network (or
is denied). A similar procedure connects devices to the device
network. In general, the premise is that the device network is
much less accessible than the CP network. Once the client is
part of the CP network, it needs to authenticate to the server.
This is where UPnP device security enters the scene. As all
the traffic flows through the server and the device network is
(more or less) save, the authentication needs to be done only
once, based on the server’s security service. The server may
act as security console to the device network, to configure
devices implementing UPnPs device security.

The user description and access right management is a
compromise between the highest possible security solution and
the one with lowest configuration efforts. For CARUSO, no
individual users are defined but four typical roles with their
own access schemes based on access levels. Access control
information is stored on the server. The smallest access entity
is an UPnP action. Discoveries and searches are currently
not secured. The server holds the predefined access levels for
all actions of all known UPnP DCPs. A global policy exists



3

for all other (non-DCP) devices (allow all, deny all). As an
example, this makes it possible to restrict access for a standard
user to devices he could also control using conventional
controls (e.g. light switches). If the client is aware of its
location, access could be granted on the condition of physical
presence in a room. While in those scenarios, no configuration
is needed, introducing new user levels, new device classes
or differentiating between instances of individual users or
devices, result in human intervention. Decisions on the server
are simple: If an authenticated SOAP action is received from
the CP network, the access level of the user and the action are
compared. If the access level of the user is equal or higher than
the one of the action, the action is forwarded to the device.

C. User Interfaces

The user interface (UI) provides the means to control the
integrated devices and services. This makes it one of the most
important factors concerning the user acceptance. In our case,
it must be able to adapt to the context of use. Different users
should see different, task based views of the system. The UI
shall be properly rendered on mobile devices running Windows
Mobile 5. Intuitive, responsive and graphically appealing are
further adjectives describing a good UI.

It’s a common design practice to separate the functional
aspects of a system from its representation to the user. UPnP
provides functional device and service descriptions. But its de-
signers also thought about presentation issues. That’s why the
XML device description holds an optional ”presentationURL”
tag with a link to a UI description. Later on, the possibilities
were expanded by defining DCPs for remote UI servers
and clients. These allow UPnP aware remote UI clients to
detect possible (proprietary) sources of UIs on UI servers and
download them for rendering. [10] discusses these concepts.

Taking ”plain” UPnP (no UI DCPs), there are several
alternatives for the CP to render the UI. The first fundamental
decision is whether the UI information is delivered over the
network or resides in an application on the CP. For the sake
of context awareness, maintainability and homogeneity, we
decided to deliver it over the network.

In a straight forward approach, the CP could generate a
UI out of the pure XML description delivered by UPnP. The
device description contains useful metadata and the service
descriptions list all ”actions” a user can execute on the
device, including the ”arguments” and their data types. For
a UPnP Media Renderer, the CP sees that there is a service
”RenderingControl” with an action ”SetVolume” that takes an
Integer from 0..100 as ”DesiredVolume”. It could build up a
tree view listing the detected devices with all their services
and actions (Fig. 2). Then it could provide an entry dialog
for each action which simply lists all arguments top down.
As an example, for ”SetVolume” there would be a text entry
field or a slider for 0..100. It’s up to the user to interpret
these terms shown on the UI coming directly from the UPnP
description. Such a UI may be helpful for an engineer reading
parameters out of a device he knows well. But it’s not meant
for standard users. In our Media Renderer example, all the user
might want to do is to play/stop a movie and set the volume.

Fig. 2. Left: User interface generated out of pure UPnP descriptions. Right:
User interface of a simple media renderer generated out of the XAML file
depicted below.

The two UPnP services achieving this hold 46 actions and a
lot of cryptic arguments. The CP has no information on which
actions to present to which user and how to chose and arrange
elements for e.g. the play/stop actions.

An alternative is to generate web pages delivered over the
presentation link. Unfortunately, investigations have shown
that today’s mobile browsers are not ready to deliver the
performance and the feature set needed for the UI we have
in mind. Future generations of devices and technologies such
as AJAX, Flash Lite, MS Silverlight etc. may change that. In
CARUSO, the CP gets a file written not in HTML but in a User
Interface Description Language (UIDL). Its a declarative de-
scription of the UI. Numerous such XML languages have been
created already (a recherche came up with around 25). The
XAML language, which is an integral part of the Microsoft
WPF (Windows Presentation Foundation), has been evaluated.
As the standard UPnP device is not likely to send this file, a
UI bundle running on a CARUSO server generates the XAML
description. The server takes the UPnP description coming
from the device, injects a link to the XAML file and forwards it
to the CP. The event handlers in the XAML file point to UPnP
actions executed when a user interacts with the according UI
elements (Fig. 2). The file does not contain absolute location
coordinates and sizes of elements etc. The CP makes these
decisions when it parses the XAML file and renders the UI
(depending on display resolution, hardware performance etc.).
[11] further discusses dynamic UI generation.

D. Services

Users approach the system with certain tasks in their mind.
These may be as simple as ”turn on the light” or ”set the



4

room temperature to 20 degrees centigrade”. But they can
also become more complex, like ”watch a DVD” or ”prepare
room 302 for a presentation meeting”. The system shall
place services at the user’s disposal to achieve her goals.
UPnP defines services and how to discover and utilize them.
However, UPnP - as a peer-to-peer technology - is inherently
device centric. Its services always relate to one specific device.
But the services the user has in mind may involve an intelligent
orchestration of several devices. In general, the user is neither
interested in which devices are involved nor what sequence of
actions to execute on them. She just wants to get the job done.

Such ”high-level” services can also be published through
UPnP. To make this happen, we introduce a new UPnP
device, the ”Services Server”. The CPs in the system can
detect services servers connected to the UPnP network and
query for their services. Each UPnP service of such a server
device provides a high-level service to the user. The high-
level services themselves run as OSGi bundles on the server
node. This node also has knowledge of the other UPnP devices
attached to it (via device network) and has the ability to control
them. One could think of dynamically created services such
as ”turn on all the lights” or services carefully hand crafted
for specific tasks. In the end it’s up to the implementer of the
service bundle, how intelligent the service interacts with the
network and the user. There are promising research results on
smart services [12] [13].

UPnP has been designed for local networks. Sending multi-
cast discovery messages around the Internet is not feasible. It
is possible to connect two local UPnP networks over the Web
using VPN techniques. An idea has been proposed to connect
mobile Internet devices via the SIP protocol invented for IP
phones [14]. And a web based UI front-end can be used to
remotely manage and control the local network if that is a
wish. But for stakeholders of a building as well as for service
providers, it might be an interesting option to integrate external
services over the Internet. One could think of services reaching
from simple weather forecasts to intelligently control blinds,
up to health care or ambient assisted living (AAL) scenarios
for elderly people still living at home.

Web services are the natural choice to implement these
services. Regrettably, UPnP descriptions are not compliant
with the XML dialect that describes web services (WSDL).
The reason is that the web services standard did not exist,
when UPnP was designed. There are two ways of opening the
network for web services. They both lead over the services
server. First, the server could act as a web services directory
(UDDI) for the local network. That would require the CPs
to handle the web services standard and bring a completely
new mechanism into the system. As there is already a service
concept based on UPnP, we decided to build an UPnP-to-
Web Services gateway into the services server. So for each
web service, an (automatically generated) wrapper bundle is
running on the server translating UPnP actions to web services
remote procedure calls (both SOAP based). The web services
are internally published over the UPnP services list of the
services server. At this point, it’s worthy to mention that there
is an initiative going on to merge the two standards. The
Device Profile for Web Services (DPWS), sometimes called

UPnP V2.0, seeks to close the gap. It intends to include
missing device support and plug and play capabilities for web
services, which on their terms add some of the missing features
to UPnP. Time will show if DPWS is a better solution and
reaches the wide acceptance of UPnP [15].

IV. CONCLUSION

The paper exposed additions to UPnP in an integrated home-
or building network. Key requirements of such a network in-
clude ease of use, minimal engineering efforts and broad, stan-
dards based applicability. Having this in mind, we proposed
a network structure and possible solutions to connect network
participants, manage users and restrict their access, provide
sophisticated dynamic user interfaces and integrate smart high-
level services. These topics are studied and implemented in
the course of the ongoing CARUSO project, which seeks to
unify and simplify the supervision and control of devices in
buildings. We think that the proposed additions fully enable
UPnP to play a major part in such networks without losing its
undeniable strengths.

REFERENCES

[1] DLNA - Digital Living Network Alliance, ”DLNA Overview and Vision
Whitepaper 2006”, [ONLINE] http://www.dlna.org

[2] W. Kastner and H. Scheichelbauer, ”UPnP Connectivity for Home and
Building Automation”, Parallel and Distributed Computing and Net-
works, 2004

[3] S. Knauth, R. Kistler, D. Käslin and A. Klapproth, ”SARBAU - to-
wards highly self-configuring IP-fieldbus based Building Automation
Networks”, IEEE International Conference on Advanced Information
Networking and Applications 2008

[4] A. Klapproth, D. Käslin and T. Peter, (Apr. 2005), Lowcost Wireless
Webserveer, ZigBee Entwicklerforum 2005 Munich, [ONLINE]
http://www.ceesar.ch/cms/upload/pdf/Paper%20Wireless%20Webserver%20
HTA%20Luzern.pdf

[5] UPnP Forum, ”UPnP Device Architecture”, Version 1.0, June 2000,
[ONLINE] http://www.upnp.org/specs/arch/UPnP-DeviceArchitecture-
v1.0.pdf

[6] R. Kistler, S. Knauth, D. Käslin and A. Klapproth, ” CARUSO - Towards
a context-sensitive architecture for unified supervision and control”,
IEEE International Conference on Emerging Technologies & Factory
Automation, 2007. ETFA, p. 1445-1448

[7] F. Reynolds, ”The Ubiquitous Web, UPnP and Smart Homes”, [ONLINE]
http://www.w3.org/2006/02/reynolds-paper.pdf

[8] S. Knauth, R. Kistler, D. Käslin and A. Klapproth, ”UPnP Compression
Implementation for Building Automation Devices”, 5th IEEE Interna-
tional Conference Industrial Informatics, INDIN 2007, p. 75-79

[9] OSGi Alliance, ”The Dynamic Module System for Java”, [ONLINE]
http://www.osgi.org/

[10] G. Zimmermann, G. Vanderheiden, C. Rich, ”Universal
Control Hub & Task-Based User Interfaces”, 2006, [ONLINE]
http://myurc.org/publications/2006-Univ-Ctrl-Hub.php

[11] J. Nichols and B. A. Myers, ”Controlling Home and Office Appliances
with Smartphones”, IEEE Pervasive Computing, special issue on Smart-
Phones, Vol. 5, No. 3, July-Sept, 2006, p. 60-67, 2006

[12] M. Valle, F. Ramparany, L. Vercouter, ”Flexible composition of smart
device services.”, The 2005 International Conference on Pervasive Sys-
tems and Computing(PSC-05), 2005

[13] IST-AMIGO, European Information Society Project on
Ambient Intelligence for the Networked Home Environment,
[ONLINE]http://www.hitech-projects.com/euprojects/amigo/

[14] B. Kumar and M. Rahman, ”Mobility Support for Universal Plug and
Play (UPnP) Devices Using Session Initiation Protocol (SIP)”, Consumer
Communications and Networking Conference, 2006. CCNC 2006. 3rd
IEEE, Vol. 2, p. 788-792

[15] H. Bohn, A. Bobek, F. Golatowski, ” SIRENA - Service Infrastructure
for Real-time Embedded Networked Devices: A service oriented frame-
work for different domains”, IEEE International Conference on Network-
ing Systems and International Conference on Mobile Communications
and Learning Technologies, 2006. ICN/ICONS/MCL 2006, p. 43-48


