
An Adaptive Network Architecture for Home- and Building Environments

Rolf Kistler, Stefan Knauth and Alexander Klapproth
Lucerne University of Applied Sciences and Arts, CEESAR

Technikumstrasse 21, 6048 Horw, Switzerland
{rolf.kistler, stefan.knauth, alexander.klapproth}@hslu.ch

Abstract

Fieldbus networks have significantly improved flexibility
and management in classic building automation domains.
However, the costs of such installations are still greatly af-
fected by the commissioning efforts needed to bring them
up and running. The dedicated cabling, initial engineering
efforts and sophisticated binding and configuration tools
often prevent home owners from investing in such networks.
On the other side, many electronic devices from other do-
mains have found their way into home- and building en-
vironments. And with IT equipment TCP/IP connectivity
and ”zero config” protocols were introduced. There is the
vision of an intelligent home/building with one integrated
network in which all devices work together seamlessly. It
may positively influence factors such as energy efficiency,
usability, flexibility, security and comfort. This paper pro-
poses an Internet protocol based architecture thought to
build up such a network. The result is a distributed, scal-
able hard- and software infrastructure that adapts to the
context of use and comes up with goal-centric services pro-
vided by the numerous underlying devices. It allows stan-
dard mobile clients to act as remote controls with dynamic
user interfaces generated on the fly. This text explores the
different building blocks that make up the architecture and
presents results derived from a first prototype.

1 Introduction

Numerous electronic devices populate a modern build-
ing today. An increasing number of them is equipped with
network control interfaces and remote access features. The
need to reduce operational costs led to more flexibility
and optimized management through networked solutions in
the domain of commercial building automation at an early
stage of the development. KNX/EIB and Echelon Lon-
Works systems are now implemented in thousands of build-
ings. More or less recently, other domains (security and
safety, energy metering, home automation, consumer elec-
tronics, domestic appliances...) have come up with their
own network solutions. So in the homes and buildings of
the next generation, all these networked devices will work
seamlessly together for the convenience of the end user and
to the benefit of solutions providers, integrators as well as

investors? Looking at the current state, the sheer number of
different technologies and standards waiting to be adopted
in the networked building is overwhelming. Technological
trends such as wireless systems or service oriented archi-
tectures (SOA) and the well known strengths of TCP/IP
based protocols will probably help to some level of har-
monization also in this field of application. However, a
building network will continue to be a very heterogeneous
environment for many years to come.

From an end user perspective, one finds that there is no
common way to control all these devices. Today’s user in-
terfaces are specific (domain, manufacturer, device), inflex-
ible and often proprietary. There are (still proprietary) solu-
tions that harmonize control for selected high-end users in
the home automation segment, but these Smart Homes are
”hand-crafted”. Bringing the heterogeneous zoo of devices
together comes at expenditures that render those systems
unprofitable for commercial buildings as well as the aver-
age home. A harmonized, intuitive and still cost-effective
solution could bring real value to all stakeholders: End
users are able to fulfil their tasks more efficiently using
adaptive, context-sensitive, two-way interfaces. They can
use their own familiar control device (e.g. smartphone) and
every multimedia system looks the same providing only the
services needed to fulfil a specific goal. New services like
load control or multiroom media streaming become true.
Devices from various vendors can be combined and inte-
grated ad hoc with a minimum of engineering efforts. This
is a very welcome feature in commercial buildings where
changes are in the order of the day and also in homes where
an ordinary user should be able to install a new device.

The UPnP forum [1], the OSGi Alliance [2], the Java
Community and many others have come up with technolo-
gies and implementations ready to use for such purposes
today. Researchers have provided building blocks with
works in the fields of plug and play systems, ambient intel-
ligence, pervasive computing, context-aware systems, task-
based user interfaces and new forms of intelligent human
machine interaction that could be part of such a system.
However, there is still much work to do to close the gap
to a truly integrated solution that follows the requirements
posed on such systems. The proposed architecture brings
these pieces together trying to stick to standards as far as
possible. It adds extensions to existing protocols and comes
up with new, pragmatic solutions where needed. Devel-



opment and implementation of the architecture are part of
the CARUSO applied research project. The field tests of
CARUSO are conducted in the iHomeLab [3], the national
platform for research on intelligent living in Switzerland.

2 Terms

The system is a collection of target devices, control
points and infrastructure components which provide low-
level and high-level services to the user, so she can fulfil
her tasks. The user of the system is a person with a pre-
defined role (secretary, care taker, security officer, building
engineer ...). The user has certain tasks (goals, needs) she
wants to fulfil with help of the system. The system assists
her with selected low-level and high-level services. A con-
trol point (CP) is a physical device that acts as human ma-
chine interface for the user, allowing her to interact with
the rest of the system. A target device (TD) is a physical
hardware device within the system that shall be controlled
and supervised. The target device exposes its interface and
provides low-level services to the user and the rest of the
system. Low-level services are built-in device functions
that have been predefined by the vendor and get into the
system with a new TD. One TD can handle them all by it-
self. High-level services or smart services are situated one
abstraction layer higher than the low-level services. They
are independent from specific devices and resemble more
closely the user needs (”user-centric”, ”task-based”, ”goal-
driven”). We assume that in most cases, the task can be
achieved with an intelligent aggregation of low-level ser-
vices from one or more TDs and other high-level services
within the system.

3 Requirements

Looking at the needs roughly described in the introduc-
tion, we identified the main features the system should of-
fer.

Adaptivity: Similar to ”flexibility” or ”context-
sensitivity”, it here mainly stands for the ability of the sys-
tem to dynamically adapt to parameters changing between
different control scenarios. These changing parameters are:
(1) Users, (2) Target devices or services, (3) Control points,
(4) The physical environment. We mainly adopted the def-
inition of the ”context of use” from [4].

Ease of use: If the usability of the system is not equal
or higher than the state of the art, the user will not accept
the new way.

Broad applicability: The system shall integrate a broad
range of devices and services from different vendors. These
vendors provide solutions for different domains in the
building most of which where treated as separate islands
so far.

Ad hoc extensibility: The system shall allow to add
new target devices, services, control points and users at run-
time and with a minimum of human interaction. Devices
and services shall be automatically discovered and become
part of the system. Changes in the system are updated on
all relevant control points.

Scalability: A small home may not have more than few
network nodes where as a commercial building can host
hundreds or even thousands of devices and services. The
range of devices reaches from high-end IT servers down
to simple low-cost wireless sensor nodes operating on very
limited resources. In terms of performance and interaction
time, building automation applications put soft real-time
requirements on the system. For lighting and jalousies, the
reaction time between the user action and the visible re-
sult of the physical actors should lie below 200 ms. Also
the other control interactions should not take considerably
longer than using conventional control systems.

Security: In discussions around networked buildings,
security issues always come up very early. Nobody wants a
system that allows any person to shutdown a building using
his PDA. No teacher presenting slides on his beamer likes
to know that every pupil in the class room has remote ac-
cess to it over the mobile phone. Some kind of authentica-
tion and authorization should be considered. It should also
be possible to backtrack control actions and assign them to
an individual, a control point or an automated service.

Mobile Standard Clients: The system shall provide the
possibility to use standard mobile clients as control points.
We chose four representative hardware devices: A newer
mobile phone (Sony-Ericsson K800i), a smartphone (Qtek
S200), a PDA (Siemens-Fujitsu Pocket LOOX 520N Se-
ries) and a Laptop PC (Thinkpad T43p). Such and simi-
lar devices are wide-spread, powerful, communicative and
many users have become familiar with them. It’s impor-
tant to state that they are thought as extensions to the exist-
ing conventional control devices and have to co-exist with
them.

Standard Protocols: Where ever possible, standard
mechanisms and protocols shall be used. This also takes
into account that infrastructure in buildings have long life
spans.

4 Architecture and Implementation

4.1 Network Topology and Infrastructure
First, the preconditions and assumptions we’ve defined:

Every communication partner in the network provides a
possibility to exchange data over IPv4 and UDP (includ-
ing multicast), either directly or over a gateway. Thanks to
the great popularity of TCP/IP and the Internet, gateways
are commercially available for almost any translation from
hard- and software used in the field (KNX/EIB, LonWorks,
ProfiBus, PLC, RS232, ...) to Ethernet/IP. From this core
IP network, we expect that it has been set up and is working
properly.

Further, all communication partners must gain access to
the IP network. One issue here is the connection of a con-
trol point to the network. It will most likely be a mobile
device with wireless communication features. However,
as public access without any security mechanisms is not
an option, connecting WLAN, Bluetooth or ZigBee clients
still lacks the convenience users expect. So the risk is high
that configuration issues, such as acquiring and entering



network keys, will distract many of them from using their
client. One way to increase usability and security is to ap-
ply emerging NFC and RFID technologies, which have a
good chance to be included into future mobile phones. If
the user enters a building with such a client, she just holds it
near an NFC access point (like a badge) and is immediately
granted access and connected to the network (or denied).

An important decision is the choice of the network
topology. It affects many of the characteristics of the sys-
tem. We found that neither a monolithically centralized
client-server, nor a fully distributed peer-to-peer approach
fits the needs (see Fig. 1). The following logical compo-
nents are part of the network:

Control Points (CP): The purpose and characteristics
of these have been described already. Under normal cir-
cumstances, the control points get their UIs delivered by
the UI server and access the target devices through the de-
vice controller. If no server is found, a CP has the capabil-
ities to discover and control target devices within its physi-
cal range directly and deliver a restricted user interface for
them (peer-to-peer mode). This peer-to-peer mode, plug
and play functionality, local data storage and other factors,
which require an autonomous CP to some extent were rea-
sons to install a dedicated control application on the CP.

Device Controller (DC): A server component that sep-
arates Control Point Networks from Device Networks
thus restricting access between control points and target
devices. Besides this, the device controller has access to
the rest of the network and acts as router to other poten-
tial device controllers and their local control point-target
device networks. Through the core network it also reaches
the services server. The DC restricts access to the services
exposed to the control points depending on the context and
handles user sessions. It synchronizes and executes com-
mands coming from control points for the target devices
sending back their notifications. Depending on the size and
type of the building, the number and performance of phys-
ical devices each holding a device controller instance may
vary (it could be only one for the whole building or one
in each room). It also segments the whole network when
deciding what traffic is flowing to the core network or is
handled between the local control point-device networks.

Target Devices (TD): The devices to be controlled. Ac-
cess happens over a device controller or directly from the
control point. The target devices expose their interface by
providing functionalities to all components able to handle
them. As already stated, the system offers - as a fallback -
access to TDs from control points on a peer-to-peer basis.
If - in this mode - part or all of the functionality of a device
is critical to be presented to every user, its up to the tar-
get device to implement some kind of security mechanism
to prevent this. If not in peer-to-peer mode, the user au-
thenticates only with the device controller. Multiple login
procedures for the same user shall be avoided.

UI Server: Services must be presented to the user some-
how. The user interface for the end user is displayed on the
control point, but the information on how to build up a UI
is coming from the UI server. The UI server communicates

with the device controller to get a list of target devices and
services to present to the user.

”Plug and Play” Gateways: Many of the target devices
will not be equipped with mechanisms such as device and
service discovery and sophisticated event handling. Com-
mon field bus technologies do not provide them natively.
To get the functionality for all devices in the system, further
components are needed. ”Plug and Play” Gateways poll
for devices on the ”field bus side” and map their services
to the other side. CARUSO runs them as UPnP-fieldbus
gateways in form of software components together with a
device controller on the same device.

Services Server: This component is optional. It’s where
high-level services and supplemental resources are located.
It holds binaries of high-level services that can be down-
loaded, installed and executed by device controllers. More-
over, a services server may provide a central user man-
agement console, logging services, translation and interna-
tionalisation services, services to fetch optional resources
(icons, images, sounds, vendor skins, help texts) and Inter-
net based external services.

Installation Server: A server which holds the control
application to be downloaded and installed on the control
points and notifies about updates.

For several reasons, OSGi has been chosen as technol-
ogy for the server components. It has a sophisticated life
cycle management, is well applicable for embedded sys-
tems, knows a predefined user administration concept, pro-
vides a services concept and comes up with standard ser-
vices like logging and UPnP interoperability services. Net-
work participants such as device controllers, UI servers,
gateways, services servers and all high-level services are
implemented as independent OSGi bundles. This approach
allows for a scalable system in which the solution provider
decides which software bundles to distribute on which
physical nodes. For a home system, they may all reside on
the same embedded server node. Some of the services may
be optional and bought and installed automatically later on
over the internet. On the control point side, the presen-
tation and control application consists of a .NET compact
framework binary.

4.2 Plug and Play Functionality
UPnP (Universal Plug and Play) was the first choice to

implement plug and play functionality in CARUSO. It’s
very powerful and seems to be the most widely accepted
protocol for this purpose. At least this is true for the con-
sumer electronic, IT and mobile computing domains (Mi-
crosoft Windows Mobile). The cross-industry organization
DLNA [5] has included UPnP as an integral part into their
”guidelines based on open industry standards to complete
the cross industry digital convergence”. UPnP initially tar-
geted home automation, but case studies and prototypes
have indicated that it can also be adopted for commercial
building automation over gateways or even in implementa-
tions on field level devices [6] [7].

UPnP bases on TCP/IP. The term control point has been
taken from UPnP. UPnP devices are target devices and ser-



Figure 1. CARUSO Architecture Details

vices in UPnP are low-level services in CARUSO. UPnP
defines protocols and procedures involved in (1) IP address-
ing (2) device and service discovery (3) device and service
description (4) control (5) eventing and (6) presentation [1].
The presentation is limited to deliver an URL to an optional
presentation page (mostly HTML). UPnP may post search
messages to the network to selectively find devices and ser-
vices (e.g. ”all color printers”, ...).

On top of that, the UPnP Forum has developed specifi-
cations for device classes, so-called ”Device Control Pro-
tocols” (DCPs). Each DCP defines a common interface for
a class of target devices and its services. Control over any
UPnP DCP compliant device becomes easy with the knowl-
edge of its well-defined interface and the ability to detect
it. DCPs have been defined for many target device classes
such as Media Servers, Media Renderers, Printers, HVAC
devices, lighting equipment, UI servers/clients and others.

Worth examinig a bit closer are the DCPs ‘Remote UI
Client‘ and ‘Remote UI Server‘. Remote UI servers may
supply UIs for remote devices and services. Remote UI
clients find UI servers automatically and get a list of com-
patible UIs (in form of URIs). The list can be filtered and
clients that speak multiple UI protocols are supported. By
selecting an UI out of the list, the UI server returns a file.
The file format is free, some known formats have been pre-
defined. This scheme is used for the CARUSO UI Server
and the control points (UI Client). If no UI server is present,
the control point is forced to take the information directly
from the target devices. They just deliver plain UPnP de-

vice and service descriptions. Besides the presentation link
mentioned, these do not contain any UI related information
(e.g. on how to represent, group and place UPnP actions
and state variables). Besides the UI server, the device con-
trollers as well as the services servers act as UPnP devices
in the network. This allows other components to discover
them and use their services.

UPnP solves a lot of problems. Two things it cannot
do: UPnP is inherently device-centric and it has poor sup-
port for presenting user interfaces. For high-level services
and user interface presentation, other solutions need to be
found. And UPnP has another drawback that affects our
system: It produces traffic on the network. As UPnP con-
trol messages are transmitted over SOAP over HTTP, the
protocol overhead is quite massive. Sending dozens of
bytes over the network to switch on a light is not very ef-
ficient. A proposal has been made to compress these mes-
sages between two gateways, that looks promising to be
implemented in CARUSO [8].

It’s worthy to mention that there exists a candidate for
successor to UPnP - the Device Profile for Web Services
(DPWS), sometimes called UPnP V2.0. It seeks to close
the gap between the Internet based Web Services standard
and the more on local networks restricted UPnP. DPWS in-
cludes missing device support and plug and play capabili-
ties for web services, which on their terms add some of the
missing features to UPnP. Time will show if DPWS reaches
the wide acceptance of UPnP [9]. The gateway plug-in con-
cept allows for CARUSO DPWS bundles.



4.3 Security and User Access
A network, which interconnects devices of a building,

raises the security question. While native security is miss-
ing in UPnP, the forum delivered missing DCPs in form of
”Device Security” and ”Security Console”. Device security
secures a UPnP device while the console provides access to
secured devices and manages access rights. Unfortunately,
these DCPs came much later, are optional and not very easy
to understand and implement. Most of the UPnP devices
today ignore them. Well, in home environments, secure
light switches may not be an important feature. And even
in commercial buildings, passwords are often transmitted
as plain text and access mechanisms can be overcome with
common field bus tools. Still, our solution needs a concept
of users and a way to protect the building from unwanted
access.

In general, the premise is that the device network is
much less accessible than the control point network. Once
the client is part of the control point network, it needs to au-
thenticate to the server. This is where UPnP device security
enters the scene. As all the traffic flows through the server
and the device network is (more or less) save, the authen-
tication needs to be done only once, based on the server’s
security service. The server may act as security console
to the device network, to configure devices implementing
UPnP’s device security.

The user description and access right management is
a compromise between the highest possible security so-
lution and the one with lowest configuration efforts. For
CARUSO, no individual users are defined but four typical
roles with their own access schemes based on access lev-
els. Access control information is stored on the server. The
smallest access entity is an UPnP action. Discoveries and
searches are currently not secured. The server holds the
predefined access levels for all actions of all known UPnP
DCPs. A global policy exists for all other (non-DCP) de-
vices (allow all, deny all). As an example, this makes it
possible to restrict access for a standard user to devices he
could also control using conventional controls (e.g. light
switches). If the client is aware of its location, access could
be granted on the condition of physical presence in a room.
While in those scenarios, no configuration is needed, in-
troducing new user levels, new device classes or differen-
tiating between instances of individual users or devices is
possible, but results in human intervention. Decisions on
the server are simple: If an authenticated SOAP action is
received from the CP network, the access level of the user
and the action are compared. If the access level of the user
is equal or higher than the one of the action, the action is
forwarded to the device.

4.4 User Tasks and Services
Users approach the system with certain tasks in their

mind. These may be as simple as ”turn on the light” or ”set
the room temperature to 20 degrees centigrade”. But they
can also become more complex, ”watch a DVD” or ”pre-
pare Room 302 for a presentation meeting”. The system
places services at the users disposal to achieve her goals.

The granularity and characteristics of these services greatly
affect the usability.

On one end, an ideal system knows a minimal number
of complex, intelligent high-level services, in which each
service exactly maps to a user task. A minimum of interac-
tion steps is required to finish a task. However, the chance
is high that a one-to-one mapping cannot be achieved and
thus the system becomes inflexible. A service that almost
does what the user intends is probably more annoying than
helpful. On the other end stands a system with many small
and simple low-level services that could, in an intelligent
orchestration, achieve any user task. Here, the user needs
to know a number of these services and apply them in the
correct order, which reduces the ease of use considerably.

Fact is that, in general, the user is not interested what de-
vices are involved, he just wants to get the job done. Most
of today’s remote controls pose device-centric views on the
user. That is helpful for a building engineer reading a pa-
rameter out of a device. However, most of the time, users
would prefer to see the system as a collection of convenient
services that closely resemble their needs.

CARUSO takes both views into account. The selection
criterion is the role of a person in the building (she can
have more than one role, but not at the same time). For this
reason, roles can be defined (standard user, advanced user,
fitter, engineer, administrator etc.). The role of the user de-
fines the view and the security level. The device controller
needs to know about these roles and their properties and
filters devices and services the user is not allowed to see.

Besides of (UPnP) low-level services, CARUSO pro-
vides high-level services to its users. They come in the
form of dynamically loadable plug-ins handled by the de-
vice controller. These services may be built into the con-
troller already or fetched from a remote services server. A
high-level service is an executable (OSGi bundle) that runs
on the DC, triggered over a CP (or from another DC). The
engineered service uses the DC for device discovery and
executes low-level services to achieve a certain goal (other
high-level services may also be involved). It’s left up to
the implementer of the service how intelligent the low-level
services are chosen and aggregated. High-level services are
published over UPnP too. A new UPnP device - the ”Ser-
vices Server” - adds those high-level services as its UPnP
services. The services server may have a connection to the
Internet and act as gateway to introduce external web ser-
vices to the local UPnP system. In addition, the CP itself
provides a facility for the user to record macros, store them
locally and replay them later on. These are simple macros
that allow to sequentially executing low-level functions on
different devices without the ability to take influence on the
timing or the execution flow.

4.5 User Interface
The user interface represents the system to the user and

thus is naturally a very important factor for the acceptance
of any control system. Although many possible human ma-
chine interaction schemes exist [10], CARUSO sticks to a
2D graphical user interface (WIMP) that can be shown on



Figure 2. Control Points: Designstudy (left)
Smartphone QTek S200 (right)

the selected mobile clients. Also for the level of adaptation,
a reasonable choice had to be made. The system adapts to:
Display size, display resolution, input modality, user role,
user language, computing performance and network band-
width. The conclusion was made that dynamic user inter-
face generation mechanisms best meet these requirements.

We know that the UI server sends a UI file to the con-
trol point. But its format is still open. Two main criteria
influence this decision: (1) where the generation process
takes place (2) when it does so. In the solution proposed
here, the CP generates the UI and it does so on the fly at
runtime. Other factors to consider in our UI design are the
proper separation of the control application and the UI pre-
sentation/logic, a presentation that goes behind textual UIs
or fixed standard widgets and usage of the same technology
for all control points, if possible.

In the chosen solution, the control point gets a file writ-
ten in a User Interface Description Language (UIDL). It’s a
declarative description of the user interface. The CP parses
this file and generates the final UI out of it. Numerous such
languages have been created already (XIML, UIML, XUL,
XAML, SVG, the authors counted 25 up till now). Be-
sides most of them are in XML, they vary greatly in what
they can do and how they do it (e.g. level of abstraction).
The user interface description should build the bridge be-
tween the purely functional service description and the fi-
nal UI. It must provide features like grouping of user in-
terface elements, element hierarchies, internationalization
etc. that are needed to build a sophisticated UI. Still, it
should not make statements in the sense of ”place a button
with height/width to position x/y” as the decisions on what
widgets to take and where to place them is left up to the
control points. It best knows about its own possibilities to
render the UI. The XAML language has finally been evalu-
ated. It is an integral part of the Microsoft WPF (Windows
Presentation Foundation). As the standard UPnP device is
not likely to send this file, a UI server bundle generates
the XAML description. In the original XAML approach,
a designer draws the GUI in a design tool and exports it

as XAML file. The file is then handed to the developer and
compiled together with C Sharp code to produce a .NET bi-
nary. This separates the design process from the program-
ming works. The link between the UI and the code is done
over event handler information in the XAML description.
So for a button, there is an event ”Click” that points to the
name of a C Sharp method containing the code to handle
the event. In CARUSO, we actually take the XAML file
and parse it on the control point. And the event handlers
in the XAML point not to C Sharp code but to UPnP ac-
tions executed when a user interacts with the according UI
elements. The file does not contain absolute location coor-
dinates and sizes of elements and so on. The control point
makes these decisions when it gets the XAML file and ren-
ders the UI.

As stated, .NET has been evaluated as technology for
the control application and the rendering. Using this ”thick
client” technology on the mobile device was also influ-
enced by an evaluation of other state-of-the-art UI tech-
nologies (HTML/CSS/JavaScript, AJAX, X-Forms, XUL,
XAML, SVG, Flash(Lite), Flex, OpenLaszlo, .NET CF).
In fact, we would have preferred a ”zero deployment” so-
lution, which means no installation procedure on the client.
Unfortunately, at the time those investigations were done,
we found that current mobile browsers and plug-ins are not
ready to deliver the performance and the feature set needed
for the UI we had in mind. Future generations of devices,
browsers like Opera or iPhone’s Safari and mobile Flash or
Silverlight plug-ins may change that.

5 Scenario and Results

This section presents a short user scenario as a summary
on how the system works.

1. A user enters the building for the first time. She has
her NFC enabled smartphone (control point) with her.
In the lobby, she takes it and places it near the registra-
tion device provided. She is registered and her phone
is now configured to access the building network.

2. She gets an SMS with an URL to the installation
server. She chooses to download, install and start it.

3. She reaches a room, the control point starts sending
UPnP discovery messages. Over the device controller,
acting as UPnP proxy, several devices respond: Two
light switches, a temperature sensor, a beamer, a DVD
player and a UI server. The CP automatically connects
to the UI server. It delivers a list of URIs that lead
to the UI descriptions of all services available to the
standard user.

4. The control point lists the service names and a short
description for each. It is possible to apply filters to
the list so the user can further specify which services
she wants to see. The standard user has the choice be-
tween three services: A lighting service, a temperature
service and a service to watch a DVD on the beamer.



She decides to select the DVD service and presses on
its icon.

5. The UI server returns a description of the UI for this
service that is parsed by the control point. Taking the
characteristics of the control point hardware into ac-
count, it renders the service on the smartphone dis-
play. There are controls to start/stop/pause the movie
and adjust the volume. Additionally, there is a slider
to dim all lights in the room and a possibility to con-
trol the jalousies. Beamer and DVD player are turned
on.

6. She uses the slider to dim the lights. The DCP UPnP
control message reaches the device controller, from
there it is sent to a gateway and translated into a com-
mand to the LON node that controls the lights. Within
200 ms, the light visibly changes its state and the con-
trol point updates its light icon.

7. She puts the DVD into the player and presses play on
her smartphone. The UI (and the beamer) indicates
that the player has received and initiated the com-
mand.

A prototype has been built with which the scenario
above can be reproduced. In a first step, a simulation sys-
tem was used to represent a simple room scenario with
lamps, sliders and a media renderer. Figure 3 shows the
simulation that runs in a Flash movie for presentation and a
Java based server to implement the logic and provide UPnP
wrappers for CARUSO. In the front, a wireless based de-
vice shows the first tests with a ZigBee gateway bundle.
Figure 2 depicts of the view the standard user when dim-
ming a light as a design study (left) and a S200 QTek smart-
phone when controlling a media player (right). The next
step will be to include a gateway for a LON WebServer
with a SOAP interface including tests in a real building en-
vironment.

6 Related Work

Many have contributed valuable ideas, concepts and
technologies that were included into CARUSO. Some quite
sophisticated universal remote controls for homes can al-
ready be bought and there are research projects that come
close to what this proposal suggests. Apart from common
universal remote controls and remote control software for
PDA, the most notable products on the market for home en-
vironments are the Philips Pronto Series, Logitech’s Har-
mony, AMX R4 ZigBee and products from Xabler and
Nevo.

The PECo (Personal Environment Controller) [11]
comes with an intuitive and novel interaction metaphor that
provides 3D-sights of the rooms controlled on a PocketPC.
The user can thus simply drag his electronic media like a
presentation file and drop it to the beamer device on the
screen. The creators of PECo have also proposed a generic
UPnP architecture for their CP [12] and mention EIB. They
have implemented their concept in an ambient intelligence

Figure 3. Room Simulation for CARUSO

meeting room. The 3D presentation needs a detailed model
of the physical environment and the devices in it. To cre-
ate and deploy these descriptions still needs too much ef-
fort for the CARUSO requirements. PUC (Personal Uni-
versal Controller) [13] [14] is a peer-to-peer approach to
control devices over various standard clients. The UIs are
generated on the client with help of a user interface descrip-
tion in an XML dialect that was developed for this project.
A prototype has proved the concept on a Palm device and
a smartphone. The new URC (Universal Remote Con-
sole) [15] standard proposes a ”Protocol to facilitate op-
eration of information and electronic products through re-
mote and alternative interface and intelligent agents”. The
first attempt to really standardize remote UIs. The cre-
ators of the standard have proposed an URH (Universal
Control Hub) architecture based on UPnP using their con-
cept of UI Sockets and task based user interfaces that is
close to CARUSO [16]. Proposals have been made on
how to integrate UPnP into building automation environ-
ments [6] [7] [8]. A lot of work has been done concerning
smart services, intelligent device ensembles and how to get
to them (e.g. using pattern matching or distributed intelli-
gent agents) [9] [17] [25] [26]. Model-driven user interface
techniques have delivered many ideas on how to dynam-
ically generate user interfaces. Interesting work has been
done concerning multi-modal [18] and multi-target user in-
terfaces [4] also especially related to mobile devices [19].
iCrafter [20] provides a service framework for ubiquitous
computing environments that supports UI selection, gener-
ation and adaptation. It also includes a service concept with
patterns for on the fly aggregation of services. CARUSO
related research is being conducted in the projects AMIGO
[21], TEAHA [22], DynAMITE [23] and Pebbles [24].



7 Conclusion

This paper introduced an adaptive architecture for an
integrated network in a home- and building environment.
Taking the special requirements of such a system, we iden-
tified all network participants and proposed a topology to
connect them. The resulting IP network provides a modu-
lar server concept with distributed OSGi bundles for tasks
such as device proxies, access control, UI generation, field
protocol plug-ins and high-level services. It also includes a
restricted peer-to-peer scenario without servers. UPnP in-
troduces the required plug and play capabilities and the ar-
chitecture assures that standard based target devices can be
integrated into the system without modification. Dynami-
cally generated, bi-directional user interfaces and a service
based approach provide the flexibility and user friendliness
critical for the acceptance of such a system. We think that
the proposed pragmatic concept enables a new generation
of control systems for home- and building environments
that can be realized not too far from now.

8 Acknowledgements

This work is funded by Siemens Switzerland Ltd, Build-
ing Technologies Division and the KTI/CTI programme of
the Swiss government.

References

[1] UPnP Forum, (July 2006), UPnP Device Architecture [On-
line]. Available: http://www.upnp.org/specs/arch/UPnP-
DeviceArchitecturev1.0.pdf

[2] OSGi Alliance, (), The Dynamic Module System for Java
[Online]. Available: http://www.osgi.org/

[3] iHomeLab, (), Intelligent Living Begins Here [Online].
Available: http://www.ihomelab.ch/

[4] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouil-
lon, and J. Vanderdonckt, “A unifying reference framework
for multi-target user interfaces”, Interacting with Comput-
ers, vol. 15, no. 3, pp. 289–309, June 2003.

[5] DLNA - Digital Living Network Alliance, (2007), DLNA
Overview and Vision Whitepaper 2007 [Online]. Available:
http://www.dlna.org/news/DLNA white paper.pdf

[6] W. Kastner and H. Scheichelbauer, “UPnP Connectivity
for Home and Building Automation”, in Parallel and Dis-
tributed Computing and Networks, 2004.

[7] D. K. A. Klapproth and T. Peter, “Lowcost Wireless Web-
serveer”, in ZigBee Entwicklerforum 2005 Munich, April
2005.

[8] S. Knauth, D. Kaeslin, R. Kistler, and A. Klapproth,
“UPnP Compression for IP based Field Devices in Build-
ing Automation”, in 11th IEEE International Confer-
ence on Emerging Technologies and Factory Automation
(ETFA’06), September 2006, pp. 445–448.

[9] M. Hellenschmidt and T. Kirste, “SodaPop: A Software In-
frastructure Supporting Self-Organization in Intelligent En-
vironments”, in IEEE International Conference on Indus-
trial Informatics (INDIN’04), 2004, pp. 479–486.

[10] A. A. N. Shirehjini, “Klassifikation der Human-
Environment-Interaction in intelligenten Umgebungen”, In-
formatik 2006. Informatik fuer Menschen. Beitraege zur 36.

Jahrestagung der Gesellschaft fuer Informatik e.V., Bonn :
Gesellschaft fuer Informatik, vol. 2, pp. 382–389, 2006.

[11] A. A. N. Shirehjini, “A novel interaction metaphor for per-
sonal environment control: Direct manipulation of physi-
cal environment based on 3d visualization”, Computers &
Graphics, Special Issue on Pervasive Computing and Am-
bient Intelligence, vol. 28, pp. 667–675, 2004.

[12] A. A. N. Shirehjini, “A Generic UPnP Architecture for Am-
bient Intelligence Meeting Rooms and a Control Point al-
lowing for integrated 2D and 3D Interaction”, in Smart Ob-
jects and Ambient Intelligence. SOC-EUSAI’05, 2005, pp.
207–212.

[13] J. Nichols, B. A. Myers, M. Higgins, J. Hughes, T. K. Har-
ris, R. Rosenfeld, and M. Pignol, “Generating remote con-
trol interfaces for complex appliances”, in 15th annual
ACM symposium on User interface software and technol-
ogy, 2002, pp. 161–170.

[14] J. Nichols and B. A. Myers, “Controlling Home and Office
Appliances with Smartphones”, IEEE Pervasive Comput-
ing, special issue on SmartPhones, vol. 5, pp. 60–67, July
2006.

[15] G. Zimmermann, T. Nixon, M. Beard, E. Sitnik, B. La-
Plant, S. Trewin, S. Laskowski, and G. Vanderheiden, “To-
ward a unified universal remote console standard”, in Ex-
tended Abstracts on Human Factors in Computing Systems,
CHI2003 Conference on Human Factors in Computing Sys-
tems, 2003, pp. 874–875.

[16] G. Zimmermann, G. Vanderheiden, and t. . C. Rich, ()
[17] M. Valle, F. Ramparany, and L. Vercouter, “Flexible compo-

sition of smart device services”, in The 2005 International
Conference on Pervasive Systems and Computing(PSC-05),
2005.

[18] M. Valle, F. Ramparany, and L. Vercouter, “Dynamic ser-
vice composition in ambient intelligence environments: a
multi-agent approach”, in First European Young Researcher
Workshop on Service-Oriented Computing, 2005.

[19] M. Vukovic and P. Robinson, “Adaptive, planning-based,
Web service composition for context awareness”, in Second
International Conference on Pervasive Computing, Vienna,
April 2004.

[20] P. Shroff and J. Winters, “Generation of Multi-Modal In-
terfaces for Hand-Held Devices Based on User Preferences
and Abilities”, in IEEE D2H2 Distributed Diagnosis /
Home Healthcare, 2006.

[21] J. Eisenstein, J. Vanderdonckt, and A. Puerta, “Applying
model-based techniques to the development of UIs for mo-
bile computers”, in 6th international conference on Intelli-
gent user interfaces, 2001, pp. 69–76.

[22] S. R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T. Wino-
grad, “ICrafter: A Service Framework for Ubiquitous Com-
puting Environments”, in 3rd international conference on
Ubiquitous Computing, 2001, pp. 56–75.

[23] IST-AMIGO, (), Ambient intelligence for the networked
home environment [Online]. Available: http://www.hitech-
projects.com/euprojects/amigo/

[24] IST-TEAHA, (), The European Aplication Home Alliance
[Online]. Available: http://www.teaha.org/

[25] DynAMITE, (), DynAMITE Dynamisch Adap-
tive Multimodale IT-Ensembles [Online]. Available:
http://www.igd.fhg.de/igd-a1/dynamite-project/

[26] Pebbles, (), PDAs for Entry of Both Bytes and
Locations from External Sources [Online]. Available:
http://www.pebbles.hcii.cmu.edu/


