
UPnP Compression Implementation for
Building Automation Devices

Stefan Knauth, Rolf Kistler, Daniel Käslin and Alexander Klapproth

Abstract— IP based field bus networks enable the usage of
common IP protocols for example for security or automatic
configuration, on the field level. IP based devices can take
advantage of the well-specified UPnP protocol for commissioning
and operation. A drawback of this protocol deployment is the
high required network bandwidth due to enormous high level
protocol overhead, especially on the XML- and SOAP based
UPnP schemes. We investigate UPnP datagram size reduction on
an experimental IP based field bus with Ethernet and wireless
IEEE802.15.4 devices, for building automation and control appli-
cations. To be able to use standard unmodified UPnP stacks, we
use transparent bidirectional XML/SOAP proxies for example on
the Ethernet/IEE802.15.4 hub and on the wireless devices itself.
The proxy uses cache-based tokenizing of the SOAP messages
and feedback, typically deflating subsequent similar messages by
orders of magnitude, thereby significantly reducing the number of
data packets and increasing the network performance especially
when using IEEE802.15.4 as wireless physical layer.

I. INTRODUCTION

UPNP compression is an important aspect of our ongoing
research on deploying IP as fieldbus protocol in building

automation and control networks. IP as fieldbus protocol
allows adopting common IT network technologies to the field
devices provided that the devices offer sufficient computational
resources. Using highly optimized stacks, it is possible to
integrate TCP/IP and high level protocols like the chain HTTP-
SOAP-UPnP on low resource devices [1], [2].

For current fieldbuses in building automation and control
(LON, EIB/KNX, PROFIBUS [3], [4], [5]), connectivity to
IP networks is typically realized with an OPC [6] server. The
field devices themselves do not communicate via IP. There
exist solutions, where devices of, for example, an EIB field
bus system are presented on an IP network in a UPnP [7]
facade [8]. This approach is somewhat superior to an OPC
XML presentation, but still the BAU devices are operating on
their native field bus protocols.

For building automation, ease of device and network com-
missioning is very important, in order to keep the network
manageable and reliable and keep maintenance efforts and
costs on a reasonable level [9]. The used protocols should
be standardized or widely– and vendor–independently used.
Therefore we chose UPnP for configuration and operation.
UPnP (Universal Plug & Play, (C) Microsoft Corp.) [7] is
a protocol for automatic device integration into IP networks.
It covers addressing, device discovery, description, control,

Manuscript received January 15, 2007, revised April 12, 2007.
This work is supported by the Hasler foundation, Berne, Switzerland, in

the frame of the SARBAU project (ManCom Call).
Performed at the CEESAR competence centre (www.ceesar.ch) at Lucerne

University of Applied Sciences, Technikumstr. 21, CH 6048 Horw/Lucerne,
Switzerland. EMail sknauth@hta.fhz.ch

eventing, and presentation. The initial target of UPnP tech-
nology was, among others, home multimedia and office appli-
cations for PCs, but nowadays there are also templates defined
for HVAC (Heating, Ventilation and Air-Conditioning), and yet
proprietary device types can be modelled in the basic device
template.

One drawback of using UPnP as operation protocol is its
”talkativeness”. Since it is based on SOAP [10], XML and
HTTP, a basic command easily can have a length of several
hundreds of bytes, which may cause congestion or command
propagation delays when IP communication is carried out
via low- or mid rate physical layers (PHY), in our example
the wireless standard IEEE 802.15.4. In this paper we report
on our investigations on XML/SOAP compression for UPnP
applications in building automation networks.

II. UPNP COMPRESSION

A. Overview

The UPnP command transfer is done via SOAP messages,
transferred as XML data sets. A SOAP message for a typical
command like ”switch light on” will have a length of some
100 Bytes. Besides addressing, the transferred information
contains the desired state of the lamp, in the particular case
1 bit. Typically, in building automation such messages are
transferred from one target to another with a rate well below
1 Hz. So in a 10 or 100 MBit Ethernet-based IP network, the
traffic overhead due to the utilization of SOAP is not impacting
the network in any way and the advantages of having a clearly
defined command transfer mechanism and syntax justifies the
overhead.

The situation changes when regarding two-wire or wireless
fieldbus systems with rates down to 9600 bps. To apply UPnP
in such scenarios, it is under many circumstances necessary
to reduce the size of a command datagram. In a recent paper
[11] we investigated the applicability of available compressors
and known approaches in the field of XML compression:
Possible methods include for example ASN.1 conversion ([12],
[13]) or binary XML ([14]). Stream compressors are typically
based on the Lempel-Zev algorithms ([15], [16], [17]), where
a dictionary is continuously updated and reconstructed from
the decoded message on the receiver side. They are used for
example in the serial IP protocol PPP (Peer to Peer Protocol),
as MPPC (Microsoft Point to Point Compression) [18] on
CCP (RFC1962: Compression Control Protocol) [19]. These
methods are very good in lossless compression of streams with
local correlation, and do not use or need any prior knowledge
of the structure of the data to be processed. On the other hand
their horizon is defined by a sliding window so that no quasi–
static parts in the dictionary are foreseen.



Compression meant as suppression of repeated transmission,
is for example used in the TCP header compression [20]
used in the SLIP (Serial Line IP) protocol. More sophisticated
methods like the XMill [21] and XGRIND [22] projects use
a variety of technologies for decomposing and tokenization,
but do not especially encounter for repeatedly sent datagrams,
and are not suitable for low resource devices. The WAP Binary
XML Content Format (WBXML) [23], as for example used
in mobile radio WAP XML compression, is tailored to lower
resource systems and transmission on low-rate wireless chan-
nels. It uses predefined tokens for commonly used strings and
for syntax elements, and uses a table for referencing repeatedly
used document strings. The scope of the compression is one
“document”, in our case this would map to a single SOAP
XML datagram.

None of the investigated methods did ideally fit to the
problem of UPnP compression for fieldbus devices in building
automation and control. On one hand, a suitable method must
take into account the limited computational resources of the
devices, which can be as low as 60 KBytes of ROM and 4
KBytes of RAM [1]. On the other hand typically there is only
a few configurable attributes on a device, which leads to a high
redundancy in subsequently filed UPnP datagrams. Therefore
for compression we chose a tokenization mechanism, were
message parts which occur frequently are replaced by tokens.
This approach is related to the WBXML format. Additionally
our method implements dynamic string dictionaries (in this
paper also termed “caches”) which have a lifetime beyond the
scope of a single XML datagram. The algorithm is able to
consistently handle connections to multiple endpoints.

B. Bidirectional Proxy

Since we want to use devices which implement standard
UPnP, the tokenizing and the recomposition shall occur in
proxies, which intercept the connection between the sender
and the receiver of an UPnP message. “Sender” is here meant
in the scope of the message direction, i.e. when a control point
sets an attribute in an UPnP device, at first the control point
acts as “sender” by sending the message to the device, which
acts as “receiver”. When the device sends its response, it acts
as “sender” and the control point acts as receiver. Messages
are compressed at the sender side and decompressed at the
receiver side, or at the corresponding proxies.

The dictionaries for substitution of strings by tokens are dy-
namic and the proxies learn by performing command transfers.
Principally, in contrast to Lempel-Ziv [15], [16] methods, the
transmitted data does not contain the dictionary information
within a defined window. Also, by requirement, the sender
shall not rely on the dictionary state at the receiver. Therefore
there exist a feedback mechanism enabling the receiver to
request missing information from the sender. The lifetime of
the dictionary is beyond the lifetime of a single datagram
transmission or the corresponding TCP connection.

In figure 1 a part of a typical network layout is sketched. IP
capable devices are connected either directly to the backbone
or communicate via a gateway. Gateways are especially used
to connect to wireless devices. As it can be seen in the figure,

Fig. 1. View into a typical network constellation. Wireless devices are
connected to the backbone via gateways, which also act as UPnP compression
proxy.

Fig. 2. Compression scenarios. (A) direct transmission (B) learning scenario
(C) compressed command transfer.

the gateways and most of the wireless devices are equipped
with a UPnP bidirectional proxy such that the communication
among the devices is compressed, reducing the datagram size
and thus the number of needed IEEE802.15.4 data packets
typically to one packet. When communicating with devices
which are connected directly to the backbone and which are
not compression-aware, the UPnP data sent over the wireless
link is still compressed since the gateway is equipped with a
transparent compression/decompression proxy.

Figure 2 shows three scenarios for command transfer. Com-
mand A is transferred directly from the sensor to the actor.
This is the normal UPnP scenario. Command B is transferred
through Proxy I - Proxy II. Proxy I replaces some parts of the
message with tokens, and stores this compression information
in his cache. Proxy II does not yet know about these tokens
and requests their full text. After that, the command can be
reconstructed and transmitted to the actor. In the case of
command B, the overall amount of transmitted data is higher
as it would be in the uncompressed scenario A, and also the
command delivery will be delayed by the duration of the
additional packet transfers. Depending on available memory



Fig. 3. Sample datagrams with HTTP, SOAP and XML content

and entropy of the transferred data, this will only happen very
occasional. If the sending proxy knows that a text part is not
available in the receivers dictionary, he directly transmits the
string and a token, and the receiver does not need to request the
full text. Command C is also transferred via the proxy chain.
In the case C, all tokens which have been used in the command
during transfer from Proxy I to Proxy II, are known to proxy II,
and the UPnP command can be reconstructed without further
communication.

C. Compression Algortithm

The actual compression is performed by replacing text with
tokens. The compressor has some implicit knowledge of the
SOAP format which, in our implementation, was coded as
rules into the algorithm. These rules are best described by
looking at a typical UPnP XML datagram, as shown in figure
3 in the “UPnP Action datagram”: With respect to the receiver
device, besides the body length, lines 1..3 do not change
between subsequent commands. Therefore the first 3 lines are
replaced by a token called the ”address“ token and the length
information. Lines 4 and 5 are again replaced by one token,
the ”action” token. The third token, “body start” consists of
the whole body up to the attribute value, i.e. lines 7..13. The

Fig. 4. Dictionary data structure.

compressor recognizes the attribute values, by simple semantic
analysis i.e. by finding text not encapsulated by the ”<“ and
”>“ characters. The attribute value is not compressed. If there
are more attributes, the part between the attribute values is
put into different ”separator“ tokens. The remaining part of
the message is again replaced by one token, called the ”body
end“ token. In the whole the compressed message consist of
the following items: An address token, the length information,
the start element, a header token, an action token, the ”body
start“ token, the attribute value, and the ”body end“ token.

While being quite simple, this compression algorithm has
the advantage of being easily implementable on low resource
devices. The text blocks are actually not really compressed
but stored in the dictionaries. This of course works only if
the set of applicable UPnP commands and attribute names
on the device is small and the number of the to–be–stored
text fragments is low such that the strings fit into the device
memory. The compressed messages may be composed out of
the following elements:

• command: begin of UPnP message
• command: end of UPnP message
• command: receiver cache reset
• command: receiver cache reset OK
• command: request full text for token
• command: full text answer for token request
• text
• token
• text with token

Besides the ”request full text“ and the ”cache reset OK“ com-
mand, the commands are issued by the sender (compressor)
and consumed by the receiver (decoder).

There is no 1:1 relationship between the sender and the
receiver of UPnP messages. Instead, principally any device
may send messages to any other device. As mentioned earlier,
each proxy keeps a dictionary of strings and tokens. The layout
of the dictionary is sketched in figure 4. For each string, there
is a list of ID/token pairs which refer to that string. The
tokenisation algorithm implements the following rules:

• Each device has a unique device ID, for example the IP
address or a subset of it.

• A token is a number with a limited length, for example 1
byte or 2 byte. It references a string in a string dictionary.
Several ID/token pairs may reference the same string.

• A token is defined between two particular devices. A to-
ken with the same number may have a different meaning
when used between the same sender but another receiver

• A device uses the same dictionary for sending and re-
ceiving. When sending, the ID in the dictionary structure
refers to the receiver ID and when receiving it refers to



the sender ID.
• The sender looks whether a string to be tokenized is

already in his dictionary. If not the sender tries to to
put the string in his dictionary, and transfer tokens to
the receiver. If there is no more memory for dictionary
entries, the sender may remove a string from the dictio-
nary to make place for a new one, or may send the string
without tokenization.

• If a receiver has no entry for a token, for example
because he removed it to make place for other tokens,
he requests the full string at the sender. For storing and
string replacement, the same rules as for a sender apply.

The devices in the network may loose dictionary alignment, for
example due to power loss, radio link loss, etc. The following
rules ensure consistent dictionary states in the system, i. e. the
receiver of a message does not misinterpret tokens which have
already changed their meaning:

• Each sender keeps a record, the ”clean ID list“ of IDs
which have consistent cache content with respect to the
sender.

• If the receiver of a message is not in the Clean ID list
a ”receiver cache reset“ command is issued, on which
the receiver clears all references to the sender ID in his
cache, and the sender puts the ID in the list.

• If a device is powered up or otherwise feels disturbed, it
completely clears its cache and its ”Clean ID“ list.

• A sender enumerates tokens on a per receiver base.
When there is an overflow in the token counter, the
corresponding receiver gets a cache reset command.

On low resource devices, the memory available for the dic-
tionary is limited such than not all appearing strings may
be available in the dictionary simultaneously. Therefore the
algorithm employs a simple dictionary string storage and
release strategy based on ”least recently used“ (LRU), but
extended with a configurable relaxation mechanism to delay
string drops.

• The dictionary carries a global ”dictionary access
counter“. Each time the dictionary is accessed, this
counter is incremented.

• Each string in the dictionary is accompanied by a ”last
accessed“ index. The ”last accessed“ index of a string
in the dictionary is is set to the current ”access counter“
value each time when the string is accessed. ”Access“
here means a lookup by token, as performed during
token reception, a lookup by string, as performed during
tokenisation, or the insertion of a new string.

• When there is no more space in the dictionary, the sender
looks for the entry which has the lowest ”last accessed“
value. It then looks whether the difference between the
current ”access counter“ value and the ”last accessed“
value is bigger than a constant Q, which is a configurable
parameter, and is typically 2..3 times the string capacity
of the cache. Capacity is meant as the cache size divided
by the average cache entry size.

The meaning of the Q parameter may be discussed with
help of figure 5. The scenario from which the values for
the graph were taken is as follows: 10 UPnP devices are

Fig. 5. Compression ratio vs. dictionary size: One controlpoint accesses 10
UPnP devices.

controlled by one control point. There are 5 groups of devices
with 2 members each. In a group, the command strings are
equal for either device, besides the ”address“ part. The control
point sends data cyclic to all 10 devices. Providing enough
dictionary space, after initial transmission of commands, all
commands are stored in the control point dictionary and in
the UPnP devices dictionaries. This is the scenario on the right
side of figure 5, the data rate is at 7% of the uncompressed data
rate. The actual dictionary requirement is about 5000 bytes.
The average length of the complete uncompressed messages
is about 450 bytes. If the dictionary size of the control point
is reduced (the cache size of the UPnP devices is big enough
in this experiment), not all command strings will fit in the
dictionary. The result in average data size reduction is now
dependent on the strategy of cache management.

The line with the triangles represents the common ”least
recently used“ strategy, where the string, which has not been
used for the longest time, is removed from the dictionary and
the new string is put into the dictionary. It is obvious that when
cyclic addressing all devices one after each other, even when
the cache holds strings for 9 devices, if used with 10 devices
will not be useful at all because when data is sent to device
10, the oldest entry, which is for device 1, will be deleted
always. Then, when sending data to device 1, the oldest entry
will be the one for device 2, and so on.

Therefore a relaxation mechanism has been implemented.
Using this relaxation mechanism, dictionary entries are only
released if they have not been accessed for more than a
definable number Q of dictionary-lookups. This leads to entries
not be released immediately when memory is completely
filled. In the given scenario, setting Q to a value of 200 will
lead to usage of the cache for devices 1..9, and communication
with device 10 will be uncompressed. Using this relaxation
mechanism, compression will be useful even if the dictionary
size is much smaller than the number of devices to be
controlled.



III. CONCLUSION

We implemented a compression scheme for UPnP messages.
This is motivated by the wish to use UPnP for configuration
and operation of field level devices for building automation
and control, on low transfer capacity physical layers. We use
bidirectional tokenizing proxies for UPnP compression. De-
ployment of such proxies allows the use of existing standards
compatible UPnP implementations on the devices and the
management respective automation nodes, with highly reduced
data rates on the IP network. Compression rates of more than
1:10 are achieved by intelligent splitting of UPnP messages
in several parts and use of cache based text replacement. The
developed schemes and implementations are tailored to low
resource devices down to 8 bit microcontroller systems. The
UPnP compression is especially useful when communicating
over IEEE802.15.4 or other low rate wireless links. Here the
packet rate can be reduced by a factor of about 5, which eases
UPnP deployment in these environments and significantly
decreases response times.

REFERENCES

[1] A. Klapproth, D. Käslin, and T. Bürkli. (2005, Apr.) Zigbee entwick-
lerforum 2005 munich: Lowcost wireless webserver. [Online]. Avail-
able: http://www.ceesar.ch/cms/upload/pdf/Paper%20Wireless %20Web-
server%20HTA%20Luzern.pdf

[2] A. Klapproth and T. Bürkli. (2005, Apr.) Zig-
bee entwicklerforum 2006 munich: Tcp/ip über ieee
802.15.4. [Online]. Available: http://www.ceesar.ch/cms/upload/pdf/FH-
Luzern TCPIP-over-IEEE802%2015%204.pdf

[3] (1990) Lon: Local operating network. [Online]. Available:
http://www.echelon.com

[4] (1995) En 50090 - eib/knx open standard for home and building
control. [Online]. Available: http://www.konnex.org/

[5] (1995) Profibus international. [Online]. Available:
http://www.profibus.com/pb/

[6] OPC Foundation. (1996) Openess, productivity, collaboration. [Online].
Available: http://www.opcfoundation.org/

[7] (2003, Dec.) Upnp forum,upnpTM device architecture 1.0, version
1.0.1. [Online]. Available: http://www.w3.org/TR/wsdl20/

[8] W. Kastner and H. Scheichelbauer, UPnP Connectivity for Home
and Building Automation. IASTED Anaheim, Calgary, Zürich: Proc
IASTED (PDCN) 2004, Hamza M. H. (Ed.).

[9] M. R. Brambley and S. Katipamula, Beyond Commissioning: The Role of
Automation. Technical Information Service, U.S. Department of Com-
merce, 5285 Port Royal Rd., Springfield, VA 22161: U.S. Department
of Energy, 2005.

[10] (2003) Soap version 1.2 part 1: Messaging framework. [Online].
Available: http://www.w3.org/TR/soap12-part1/

[11] S. Knauth, D. Käslin, R. Kistler, and A. Klapproth, “Upnp compression
for ip based field devices in building automation,” in Proc. 11th IEEE
Conf. on Emerging Technologies and Factory Automation (ETFA06),
2006, pp. 445–448.

[12] (2002) Abstract syntax notation one (asn.1) specifications, itu-t rec.
x.680 x.683 and x690 x.693 (2002) iso/iec 8824-1:2002 to 8824-
4:2002 and iso/iec 8825-1:2002 to 8825-4:2002. [Online]. Available:
http://asn1.elibel.tm.fr/xml/

[13] O. N. Inc, “Alternative binary representations of the xml information
set based on asn.1,” in W3C Workshop on Binary Interchange of XML
Information Item Sets, Santa Clara, California, USA, Sept. 2003.

[14] (2004) Xml binary characterization working group public page.
[Online]. Available: http://www.w3.org/XML/Binary/

[15] J. Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression,” IEEE-Transactions-on-Information-Theory, vol. IT-23, no. 3,
pp. 337–343, May 1977.

[16] ——, “Compression of individual sequences via variable-rate coding,”
IEEE-Transactions-on-Information-Theory, vol. IT-24, no. 5, pp. 530–
536, Sept. 1978.

[17] D. Sheinwald, A. Lempel, and J. Ziv, “On encoding and decoding with
two-way head machines,” Information-and-Computation, vol. 116, no. 1,
pp. 128–133, Jan. 1995.

[18] Cisco Systems Inc. (2000, Jan.) Microsoft point-
to-point compression (mppc). [Online]. Avail-
able: http://www.cisco.com/univercd/cc/td/doc/product/soft
ware/ios113ed/113t/113t 3/mppc.htm

[19] D. Rand. (1996, June) Rfc1962: The ppp compression control protocol
(ccp). [Online]. Available: http://www.ietf.org/rfc/rfc1962.txt

[20] V. Jacobson. (1990, Feb.) Compressing tcp/ip headers for low-speed
serial links. [Online]. Available: http://tools.ietf.org/html?rfc=1144

[21] H. Liefke and D. Suciu, “Xmill: An efficient compressor for xml data,”
in Proceedings of the 2000 ACM SIGMOD international conference on
Management of data, 2000, pp. 153–164.

[22] P. Tolani and R. H. Jayant, “Xgrind: A query-friendly xml compressor,”
in Proceedings of the 18th IEEE International Conference on Data
Engineering (ICDE), 2002.

[23] (1999, June) Wap tokenization. [Online]. Available:
http://www.w3.org/TR/wbxml/


