UPnP Compression for IP based Field Devices in Building Automation

S. Knauth, D. Kislin, R. Kistler and A. Klapproth
University of Applied Sciences of Central Switzerland — Lucerne
HTA Luzern - CEESAR Embedded System Applied Research
Technikumstrasse 21
CH-6048 Horw, Switzerland
sknauth@hta.thz.ch

Abstract

IP based field bus networks enable the usage of com-
mon IP protocols for example for security or automatic
configuration, on the field level. A drawback of this proto-
col deployment is the higher required network bandwidth
due to enormous high level protocol overhead, especially
on XML-based schemes. We investigate UPnP datagram
size reduction on an experimental IP based field bus with
Ethernet and wireless IEEES02.15.4 devices, for build-
ing automation and control applications. UPnP is used
for configuration and operation. In order to reduce data
rates, we suggest a transparent bidirectional XML/SOAP
proxy for example on the Ethernet/IEE802.15.4 hub and
on the wireless devices itself. The proxy uses cache-based
tokenizing of the SOAP messages and feedback, eventually
deflating subsequent similar messages by orders of mag-
nitude.

1. Background

It is likely that next generation building control and au-
tomation networks (also referred to as “BAU” Networks)
will migrate from current fieldbus solutions to IP proto-
col based field level solutions using wired and wireless
connections, ousting legacy technologies to special appli-
cation areas. For common building automation field bus
systems (LON, EIB/KNX, PROFIBUS [1, 2, 3]), connec-
tivity to IP networks is typically realized with an OPC [4]
server. The field devices themselves do not communicate
via IP. There exist solutions, where devices of, for exam-
ple, an EIB field bus system are presented on an IP net-
work in a UPnP [5] facade [6]. This approach is somewhat
superior to an OPC XML presentation, but still the BAU
devices are operating on their native field bus protocols. IP
as fieldbus protocol allows adopting common IT network
technologies to the field devices provided that the devices
offer sufficient computational resources. Using highly op-
timized stacks, it is possible to integrate TCP/IP and high
level protocols like the chain HTTP-SOAP-UPnP on low
resource devices [7, 8].

Figure 1 shows a device we built and use for research

s . <o g ”:.3?’“

o 8
@ Tl o
ol] u’&.l/ﬁ!

[
lot‘ TN

S

7

o

‘S

-
-
-
—
-
-
-
-

|4

€zio
- €ZOZSL

©Oas

Figure 1. experimental low cost building au-
tomation field device [7], capable of com-
munication via high level IP protocols.

applications in building automation. The device is running
on a low resource 8 bit platform offering 60 kB of flash
memory and 4 kB of RAM [7]. For building automation,
ease of device and network commissioning is very impor-
tant, in order to keep the network manageable and reliable
and keep maintenance efforts and costs on a reasonable
level [9]. The used protocols should be standardized or
widely— and vendor—independently used. Therefore we
chose UPnP for configuration and operation. UPnP (Uni-
versal Plug & Play, (C) Microsoft Corp.) [5] is a pro-
tocol for automatic device integration into IP networks.
It covers addressing, device discovery, description, con-
trol, eventing, and presentation. The initial target of UPnP
technology was, among others, home multimedia and of-
fice applications for PCs, but nowadays there are also tem-
plates defined for HVAC (Heating, Ventilation and Air-
Conditioning), and yet proprietary device types can be
modelled in the basic device template.

One drawback of using UPnP as operation protocol is
its “talkativeness”. Since it is based on SOAP [10], XML
and HTTP, a basic command easily can have a length
of several hundreds of bytes, which causes congestion or
command propagation delays when IP communication is

carried out via low- or mid rate physical layers (PHY),
in our example the wireless standard IEEE 802.15.4. In
this paper we report on our investigations on XML/SOAP
compression and decompression for UPnP application in
BAU networks

2. UPnP compression

2.1. Overview

UPnP communication for command transfer is done
via SOAP messages transferred as XML datasets. A
SOAP message for a typical command like ’switch light
on” will have a length of some 100 Bytes. Besides ad-
dressing, the transferred information contains the desired
state of the lamp, in the particular case 1 bit. Typically, in
building automation such messages are transferred from
one target to another with a rate well below 1 Hz. So in
a typical 10 or 100 MBit Ethernet-based IP network, the
traffic overhead due to the utilization of SOAP is not im-
pacting the network in any way and the advantages of hav-
ing a clearly defined command transfer mechanism and
syntax justifies the overhead.

The situation changes when regarding two-wire or
wireless fieldbus systems with rates down to 9600 bps. To
apply UPnP in such scenarios, it is necessary to reduce the
size of a command datagram. Known general approaches
to the topic of XML compression are for example ASN.1
mapping or binary XML. Using Abstract Syntax Nota-
tion One (ASN.1), various encoding rules may be applied,
therefore data may be transferred using highly compact
binary formats and compression. Since XML formatted
data and XML schema can be modelled in ASN.1 to some
extent [11], it is possible to implement bidirectional con-
verters between the two formats. In [12] a typical com-
pression ratio of 4 (Sizexwmr,/Sizeasn) has been reported
for ASN.1 BER encoding. The chapter “control” of the
UPnP description [5] also suggests the possibility to trans-
fer data “out of band” i.e. by other mechanisms like direct
binary transfer. Recently a W3C XML Workgroup “Bi-
nary XML” has been formed on this issue [13].

2.2. Tokenization

Tokenizing is here meant to be the replacement of a
string with a key, where the key allows retrieval of the
string from a dictionary. It is probably among the old-
est data compression methods in information technology.
Fundamental algorithms are the LZ77 [14] and LZ78 [15]
stream compressors [16], where the dictionary is contin-
uously updated and reconstructed from the decoded mes-
sage on the receiver side. These algorithms are widely
used in communication technology for example as com-
pressors on the serial IP protocol PPP (Peer to Peer Pro-
tocol), as MPPC (Microsoft Point to Point Compression)
[17] on CCP (RFC1962: Compression Control Protocol)
[18]. These methods are very good in lossless compres-
sion of streams with local correlation, and do not use or
need any prior knowledge of the structure of the data to

be processed. On the other hand their horizon is defined
by a sliding window so that no quasi—static parts in the
dictionary are foreseen.

UPnP action messages in BAU applications normally
have a length of several hundreds of bytes, imposed by the
textual formulation of the HTTP headers and the identifi-
cation of services and addressing by URLs, and the trans-
mission of lengthy attribute names, which mostly occur
twice. A typical operation in a BAU network might be a
light switch, sending a “switch on” command to a lamp,
or a thermometer which cyclic transmits a measurement to
a heating controller. When regarding several subsequent
occurrences of these events between two specific devices,
the differential information is only 1 bit, in the case of the
lamp, and a few bytes in the case of the thermometer. It is
straightforward to replace the common parts of the mes-
sages by tokens.

A common approach, compression here meant as sup-
pression of repeated transmission, is for example the TCP
header compression [19] used in the SLIP (Serial Line
IP). Here the headers have a strict block structure of con-
stant length and no semantic information for reconstruc-
tion is needed, at the receiver side. Also the communi-
cation is one-way, the coder always knows the dictionary
state of the encoder. The mentioned CCP protocol allows
a misalignment message to be sent from the encoder to the
coder.

If the configuration of the network was fixed and all to—
be—transferred messages known in advance, the tokeniz-
ing mechanism could use a fixed dictionary. The sender
of a SOAP command datagram would replace all occur-
rences of known words by tokens, and the receiver would
replace the tokens back to the full string. The disadvan-
tage of this approach is its static behavior. If devices are
brought up after the dictionary is defined or are updated
to have new commands, their messages may not be in-
cluded in the common token dictionary. More sophisti-
cated methods like mobile radio WAP XML compression
[20] and the XMill [21] and XGRIND ([22] projects use
a variety of technologies for decomposing and tokeniza-
tion, but do not especially encounter for repeatedly sent
datagrams, and the latter two are not suitable for low re-
source devices.

2.3. Bidirectional Proxy

Since we want to use devices implementing standard
UPnP, the tokenizing shall occur in proxies, which inter-
cept the connection between sensor and actor. The dic-
tionaries are dynamic and the proxies learn by performing
command transfers.

More detailed, if the sender does not find a message
part in his dictionary, he detects which parts of the mes-
sage are likely to occur repeatedly. For this analysis
some knowledge of the protocols to be transferred (UPnP,
SOAP, XML, HTTP) is used. Some HTTP headers like
for example LENGTH are not transferred but recreated at
Proxy II. It is expected that also the SOAP envelope does

not change when regarding transfers between two particu-
lar devices. By such predefined behavior the message can
be stripped down to the attribute values and some tokens.

Principally, in contrast to Lempel-Ziv [14, 15] meth-
ods, the transmitted data does not contain the dictionary
information. Also, by requirement, the encoder shall not
rely on the dictionary state at the decoder. Therefore there
will be the possibility for a feedback for the encoder to re-
quest missing information from the coder. The lifetime of
the dictionary is beyond the lifetime of a single datagram
transmission or the corresponding TCP connection.

In order to minimize the synchronization require-
ments of participating proxies, the tokens consist of
hashes which are calculated from the to—be—tokenized text
blocks. The sender and the receiver store the hash-values
and the corresponding strings. Hashes is here meant as a
relation of the full text into a number within a predefined
range. A very easy hash function would just be the sum
of the ASCII-values of the message characters modulo the
desired range. Principally, several text inputs may give the
same hash value, and in the case of the above defined func-
tion, all letter—permutations will give the same value. We
are testing 16 bit and 24 bit hashes generated by shift reg-
isters with XOR-feedback. Collision-avoidance (two dif-
ferent strings generate the same hash) is carried out by the
sender. If a hash collision is detected, the string is broken
in two parts. In a scenario where a target device listens
to several sending proxies, care must be taken to avoid
cross-site collisions. The solutions under investigation are
communication between the two sending proxies or alter-
natively handling of hashes of different coders separately
on the encoder side. A second method under investigation
for coding of the tokens is enumeration. Here, the prob-
lem of counter overflow is addressed by a count window
and all entries outside of the window have to be deleted,
on the coder as well as on the encoder.

Figure 2 shows three scenarios for command transfer.
Command A is transferred directly from sensor to actor.
This is the normal UPnP scenario. Command B is trans-
ferred through Proxy I - Proxy II. Proxy I replaces some
parts of the message with tokens, and stores this compres-
sion information in his cache. Proxy II does not yet know
about these tokens and requests their full text. After that,
the command can be reconstructed and transmitted to the
actor. In the case of Command B, the overall amount of
transmitted data is higher as it would be in the uncom-
pressed scenario A, and also the command delivery will be
delayed by the duration of the additional packet transfers.
Depending on available memory and entropy of the trans-
ferred data, this will only happen very occasional. Com-
mand C is also transferred via the proxy chain. In the case
C, all tokens which have been used in the command dur-
ing transfer from Proxy I to Proxy II, are known to proxy
II, and the UPnP command can be reconstructed without
further communication.

SOAP cmd A
SOAP i
cmd B comp{‘essed
> command B
| e
o — | full text -
7] | requedt 2 5
B & | full text o g
ull te
SOAP
respohse : B
SOAP | ——
cmd C comptessed
™ command C SOAP
I cmd C
| —

I
low rate connection

Figure 2. Compression scenarios. (A) direct
transmission (B) learning scenario (C) com-
pressed command transfer.

2.4. Results

We are currently implementing the proposed UPnP
proxy system, and the proxies themselves. The intelligent
discovery of unchanged parts in the UPnP messages is a
main challenge of the project. By saving interlaced hashes
over fixed text passage lengths, comparison time between
stored and new commands is optimized. Depending on
cache size and entropy of the uncompressed UPnP data,
compression ratios of 1:100 have been achieved for spe-
cial configurations, for example operation of illumination
where the actual information is 1 bit only. In this case
complete envelopes can be replaced by their hash values.

3. Conclusion

3.1. Summary

We developed a compression / suppression scheme for
UPnP messages. This is motivated by the wish to use
UPnP for configuration and operation of field level de-
vices for building automation and control, on low trans-
fer capacity physical layers. We suggest the usage of
bidirectional tokenizing proxies for UPnP compression.
Our ongoing research indicates that using of such prox-
ies allows the UPnP implementation on the devices and
the management respective automation nodes to be stan-
dards compatible, but still operate with highly reduced
data rates on the IP network. This enables the deploy-
ment on networks with data transfer rates considerably
lower that those of Ethernet, as it is the case in common
two-wire field bus networks standards or on, for example,
IEEES802.15.4 wireless connections.

3.2. Outlook

‘We believe that IP on the field level of building automa-
tion networks will play an increasing role besides other

field level protocols in most of BAU domains, because
of advantages like infrastructure sharing, standardization,
connectivity, and software solutions available, to name but
a few of them. In IP based building automation and con-
trol field bus systems, we propose UPnP to be a good so-
lution for easy configuration and setup. UPnP proxy tech-
nology for data reduction is an important prerequisite in
this concept.

References

(1]

(2]

(3]
(4]

(3]

(6]

(7]

(8]

(9]

[10]

(1]

(12]

[13]

[14]

(1990), LON: Local Operating Network [Online]. Avail-
able: http://www.echelon.com

(1995), EN 50090 - EIB/KNX open Standard for
Home and Building Control [Online]. Available:
http://www.konnex.org/

(1995), PROFIBUS International [Online]. Available:
http://www.profibus.com/pb/

OPC Foundation, (1996), Openess, Productivity, Collabo-
ration [Online]. Available: http://www.opcfoundation.org/
(Dec. 2003), UPnP Forum,UPnPT™
chitecture 1.0, Version 1.0.1 [Online].
http://www.w3.org/TR/wsdl20/

W. Kastner and H. Scheichelbauer, UPnP Connectivity for
Home and Building Automation, Proc IASTED (PDCN)
2004, Hamza M. H. (Ed.), IASTED Anaheim, Calgary,
Ziirich.

Device Ar-
Available:

A. Klapproth, D. Kislin, and T. Biirkli, (Apr.
2005), ZigBee Entwicklerforum 2005 Munich:
Lowcost Wireless Webserver [Online]. Available:

http://www.ceesar.ch/cms/upload/pdf/Paper%20Wireless
%20Webserver%20HTA %20Luzern.pdf

A. Klapproth and T. Biirkli, (Apr. 2005), Zig-
Bee Entwicklerforum 2006 Munich: TCP/TP
iiber IEEE 802.15.4 [Online]. Available:
http://www.ceesar.ch/cms/upload/pdf/FH-Luzern_TCPIP-
over-IEEE802%2015%204.pdf

M. R. Brambley and S. Katipamula, Beyond Commission-
ing: The Role of Automation, U.S. Department of Energy,
Technical Information Service, U.S. Department of Com-
merce, 5285 Port Royal Rd., Springfield, VA 22161, 2005.
(Mar. 2006), Web Description
Language (WSDL) Available:
http://www.w3.org/TR/wsd120/

(2002), Abstract Syntax Notation One (ASN.1) Specifica-
tions, ITU-T Rec. X.680 X.683 and X690 X.693 (2002)
ISO/IEC 8824-1:2002 to 8824-4:2002 and ISO/IEC
8825-1:2002 to 8825-4:2002 [Online]. Available:
http://asnl.elibel.tm.fr/xml/

O. N. Inc, “Alternative binary representations of the XML
Information Set based on ASN.1”, in W3C Workshop on
Binary Interchange of XML Information Item Sets, Santa
Clara, California, USA, Sept. 2003.

(2004), XML Binary Characterization = Work-
ing Group Public Page [Online]. Available:
http://www.w3.org/XML/Binary/

J. Ziv and A. Lempel, “A Universal Algorithm for
Sequential Data Compression”, IEEE-Transactions-on-
Information-Theory, vol. IT-23, no. 3, pp. 337-343, May
1977.

Services
[Online].

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

J. Ziv and A. Lempel, “Compression of individual se-
quences via variable-rate coding”, IEEE-Transactions-on-
Information-Theory, vol. IT-24, no. 5, pp. 530-536, Sept.
1978.

D. Sheinwald, A. Lempel, and J. Ziv, “On encoding and
decoding with two-way head machines”, Information-
and-Computation, vol. 116, no. 1, pp. 128-133, Jan. 1995.
Cisco Systems Inc., (Jan. 2000), Microsoft Point-
to-Point Compression (MPPC) [Online]. Available:
http://www.cisco.com/univercd/cc/td/doc/product/soft
ware/ios113ed/113t/113t_3/mppc.htm

D. Rand, (June 1996), RFC1962: The PPP Com-
pression Control Protocol (CCP) [Online]. Available:
http://www.ietf.org/rfc/rfc1962.txt

V. Jacobson, (Feb. 1990), Compressing TCP/IP Head-
ers for Low-Speed Serial Links [Online]. Available:
http://tools.ietf.org/html?rfc=1144

(June 1999), WAP tokenization [Online]. Available:
http://www.w3.org/TR/wbxml/

H. Liefke and D. Suciu, “XMill: An efficient compressor
for XML data”, in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, 2000,
pp. 153-164.

P. Tolani and R. H. Jayant, “XGRIND: A Query-friendly
XML Compressor”, in Proceedings of the 18th IEEE
International Conference on Data Engineering (ICDE),
2002.

