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ABSTRACT

Hardware acceleration is a popular method to boost perfor-

mance in video processing applications. This paper shows

how to accelerate such applications on a general-purpose

CPU by means of a coprocessor that is tightly-coupled to

the instruction pipeline. A method for efficient data transfer

between CPU and coprocessor is developed, and the resulting

data path architecture with optimum scheduling of opera-

tions is demonstrated. Based on this method, a coprocessor

has been implemented in a Virtex-5 FPGA with embedded

PowerPC to accelerate candidate operations of a video con-

tent analysis algorithm. Experimental results indicate that

with a relatively small degree of parallelism, corresponding

to modest hardware cost, the overall frame rate can be in-

creased between 18 and 105 % depending on processing and

application parameters.

Index Terms— Video signal processing, Coprocessor,

Hardware acceleration, Field programmable gate arrays

1. INTRODUCTION

During the past five or so years hardware acceleration for im-

age and video processing has entered the mainstream. While

in high performance computing environments GPUs are com-

monly employed, FPGA-based acceleration has gained pop-

ularity for embedded systems [1]. Hardware system vendors

offer a variety of platforms for FPGA-based coprocessors that

ought to improve performance in highly parallel regions of

the software code. The inner loops of arithmetical compu-

tations performed in two-dimensional signal processing rep-

resent such regions. Nevertheless, still relatively few quanti-

tive data is available on overall speedup factors FPGA-based

accelerators can achieve in real-world video content analysis

(VCA) applications.

Presumably the main obstacle in utilizing the enormous

processing power of FPGAs is the need for communication

with the system memory, the CPU, or both. Issues like limited

memory bandwidth, arbitration of several clients that require

access to one and the same resource, and data synchronization

make it notoriously difficult to amortize the cost of commu-

nication between FPGA, memory and CPU. As noted in [2],

it is not unusual that the overhead inferred by this commu-

nication completely offsets the benefit coprocessors are able

to provide. It therefore seems natural to focus on methods

that minimize the communication overhead between FPGA,

CPU, and memory. One way to do so, are tightly-coupled

coprocessors (TCC). Such coprocessors can be realized effi-

ciently if the CPU is embedded into the FPGA, as is the case

for instance with Xilinx Virtex-5 devices.

A similar TCC setup was recently used in [3] to propose

dynamic instruction set extension, but applied to floating

point operations. Previous work on FPGA-based VCA accel-

eration includes [4], where an efficient geometrical moment

engine was developed and evaluated in a hypothetical multi-

processor environment. The same authors made architectural

explorations for such environment by means of simulation

[5]. A quantitive analysis of FPGA speedup factors for typ-

ical image processing operations was presented in [6]. The

anticipated speedup factors of 20 to 100 are based on the anal-

ysis of three isolated filtering operations, which perfectly lend

themselves to FPGA implementation. Opposed to this, ex-

perimental results in the paper at hand represent the potential

of coprocessors in VCA for real-world applications. Further-

more, while the analysis in [6] is based on abstract measures

like instruction efficiency and rated number of clock cycles,

a more practical approach is taken here by using actual frame

rates as the ultimate performance indicator.

The main contributions of this paper are twofold. First,

a method for efficient data transfer between a CPU and a

tightly-coupled coprocessor is systematically developed. This

method can be applied to any two-dimensional signal pro-

cessing task and serve as the basis for automated design of

such coprocessors. Second, quantitive results obtained from

a FPGA implementation of a so designed coprocessor are pre-

sented. These results indicate speed-up factors as a function

of processing parameters in a real-world VCA application.

The rest of the paper is organized as follows: Section 2

identifies operations to be accelerated in the target VCA al-

gorithm and explains the hardware and software environment

used. In section 3 the design method for the coprocessor is

developed. Experimental results are presented in section 4

and the paper is concluded in section 5.

87978-1-4244-8933-6/10/$26.00 ©2010 IEEE SiPS 2010



Fig. 1. VCA processing flow, with highlighted operations to be accelerated.

Fig. 2. Visualization of major VCA processing steps (a-c) and

respective share of CPU time (d) for operations from Fig. 1.

2. HW/SW ENVIRONMENT

2.1. Target Application

Fig. 1 shows the flow of operations within the VCA target

application. Starting from the input image, see Fig. 2(a), seg-

mentation is performed via background subtraction, which is

based on pixel-wise gradient calculation. The subsequent bin-

ning of the results in eight equally spaced orientation bins

is visualized by different colors in Fig. 2(b). The orienta-

tion fluctuation of each pixel is analyzed over time and back-

ground (constant orientation) and foreground (changing ori-

entation) pixels are extracted. After successive application

of erosion and dilation operations, the foreground pixels are

clustered to form the blobs as shown in grey scale in Fig. 2(b).

Segmentation is followed by a feature tracking analysis [7],

see Fig. 2(c). Detected features and their history are repre-

sented by circles and lines, respectively. This analysis is lim-

ited to the foreground pixels obtained during segmentation,

thereby considerably reducing the processing time required.

The corresponding software implementation has been

ported to the target platform described in section 2.2. By

profiling the code, candidate operations for hardware acceler-

ation have been identified. Four operations were selected, cf.

Fig. 1, which all work by row-wise iteration over all frame

pixels. As shown in Fig. 2(d), the four operations to be accel-

erated consume about two thirds of the total CPU time for a

typical parameter setting (see section 4.1).

2.2. System Architecture

In general, coprocessors can be linked to a CPU in three dif-

ferent ways as shown in Fig. 3. While a quantitative com-

parison between the three system architectures is beyond the

scope of this paper, we briefly discuss their general implica-

tions here. In Fig. 3(a) the coprocessor is a slave device on

the system bus and its local memory must be served by the

CPU via a high-latency path. If the coprocessor can access the

main memory directly, see Fig. 3(b), the CPU is freed from

transferring data to the coprocessor. However, the required

arbitration increases bus latency, and the memory bandwidth

available for the CPU is reduced. With a tightly-coupled co-

processor (TCC) as in Fig. 3(c) the memory bandwidth for

the CPU remains unchanged, at the cost of the CPU being

in charge of all data transfers to and from the coprocessor.

However, such transfers are less costly than in Fig. 3(a), be-

cause data between CPU and coprocessor is now exchanged

via a specialized and highly efficient interface, which links

the CPU instruction pipeline and the TCC.

In case of the PowerPC440x5 integrated into Xilinx

Virtex5-FXT FPGAs, the specialized interface is formed

by an Auxiliary Processing Unit (APU). Since the PowerPC

CPU is embedded as a hard macro within the FPGA itself,

high transfer rates become feasible. For the implementation

at hand an APU-interface rate of 200 MHz was achieved,

which is half the CPU clock frequency of the target system.

2.3. Coprocessor Architecture

The architecture of the VCA coprocessor and its interface to

the CPU are shown in Fig. 4. The APU continuously monitors

the CPU instruction pipeline and dispatches any user-defined

instruction (UDI) to the TCC. Only non-autonomous UDIs

have been used, which can provide two 32-bit operands

from the CPU register file to the TCC and return one 32-

bit result from the TCC back to the CPU register. With

non-autonomous instructions, the CPU instruction pipeline is

stalled while the UDI is being processed by the TCC.

A sequence of UDIs that provide operand data and return

results that the TCC calculates from that data, is called a TCC

transaction. Upon completion of every transaction the TCC

returns to its idle state. This implies that the TCC is unaware

of the overall state of frame processing. The TCC solely

maintains the state of the current transaction, stores operand

data, and invokes its internal processing module correspond-

ing to the type of UDI received from the APU.

For byte-oriented video processing the TCC can be
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(a) (b) (c)

Fig. 3. System architecture with CPU and coprocessor loosely coupled via system bus (a) or memory controller (b), and tightly

coupled to the instruction pipeline (c).

Fig. 4. VCA coprocessor architecture. The APU dispatches

user-defined instructions (UDI) from the CPU instruction

pipeline together with two 32-bit operands to the input data

array of the TCC. Results computed by any of the eight-fold

processing units are returned via the APU.

viewed as an application-specific SIMD (single instruction,

multiple data) extension for the 32-bit embedded PowerPC

processor. The degree of parallelism of that extension is given

by the 32-bit data interface between TCC and CPU, and is

comparatively small. In the following section a method is

described to utilize this given interface efficiently, such that a

net speedup of the VCA algorithm can be achieved.

3. HW/SW CODESIGN

3.1. Data transfer organization

As noted above, the efficiency of the TCC is determined by

the efficiency of the data transfer to and from the coprocessor.

Ideally, to minimize the communication overhead, each pixel

in the video frame to be processed is transferred to the TCC

exactly once. However, the TCC can not access main memory

and its only local storage is the input data array as shown in

Fig. 4. This array is realized by flip-flops rather than Block-

RAM in order to give each of the eight parallel processing

units flexible single-cycle access to multiple input data bytes,

and still maintain a regular, and hence scalable storage struc-

ture. Consequently, it is crucial to keep the size of the array

as small as possible. On the other hand, with a minimum size

array equal to the operation mask size, only one result pixel

can be returned per transaction. Such byte-wise operation is

inefficient on a 32-bit architecture.

Hence, the number of times a pixel must be transferred

has been minimized only to such an extent that allows to build

the local TCC memory from flip-flops, but still make efficient

use of the bandwidth available between CPU and TCC. This

compromise resulted in the data transfer organization shown

in Fig. 5(top) for a 3x3 mask. For this mask size, three UDIs

make up one transaction. The first two UDIs convey pixel

data to the first stage of the input array. The second and third

UDI return result data. At the end of any transaction, first

stage data becomes second stage data, and so on. The offset

of the result data relative to the first stage input data is chosen

such that one pixel remains unprocessed at the frame edge.

Note that the number of columns in the input data array

(twelve), as well as the number of result pixels computed per

transaction (eight) are multiples of four. This is because four

pixels make up a 32-bit UDI operand and result, respectively.

Similarly, the number of rows in the input data array (four)

is a multiple of two. This is because two operands can be

transferred per UDI.

The 3x3 data transfer principle can be formally extended

to accommodate arbitrary mask sizes, see Fig. 5(bottom). Let

r and c be the number of rows and columns of the filter mask

at hand. Given that each UDI comprises two operands and

one result, each consisting of b bytes, then all quantities that

define the data transfer organization can be computed from

the three parameters r, c = 1, 3, 5, . . . and b ≥ 1 as follows.

The offset of result pixel R1 in y- and x-direction is given by

dy =
r − 1

2
(1)

dx =
⌈

c − 1
b

⌉
· b − c − 1

2
(2)
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3x3 data transfer

3x3 5x5 5x7

Fig. 5. Top: Data transfer principal for row-wise computation of eight result pixels per transaction with a 3x3 mask. Result data

from the first transaction in each row are discarded. Third stage input data is shown for reference only, but not actually used for

3x3 mask size (cf. equation (3)). Bottom: Offset dy and dx of result pixel R1, and latency-critical result pixel and associated

latency-critical operands indicated for 3x3, 5x5 and 5x7 mask sizes. Note that offset dy is calculated for 7x7 instead of 5x7

mask, because results for both 5x7 and 7x5 masks are computed within the same transaction.

Equation (1) follows directly from the number of pixels left

unprocessed at the frame edges. Equation (2) additionally

takes into account the operand word with b. These offset val-

ues ensure the minimum size of the input data memory for

a given mask size. The number of stages s in the input data

memory is

s =
⌈

c − 1
b

⌉
+ 1 (3)

From this, the total size (rows × columns) of the input data

memory follows:

memory size = (r + 1) × b · s
= (r + 1) × b ·

(⌈
c − 1

b

⌉
+ 1

)
(4)

Note that it is possible to reuse the same input data memory

for computations with different mask sizes. In this case, the

number of stages s and the total memory size is determined

by the largest mask size according to equations (3) and (4),

respectively. The offsets dy and dx are then realized for each

mask size as defined by equations (1) and (2) by maintaining

the appropriate offset between source and destination pointers

in software, see section 3.3.

3.2. Data path design

The goal in data path scheduling is to achieve minimum pro-

cessing latency for the given data transfer scheme. Since each

location in the input data array is updated at most once dur-

ing any transaction and held stable afterwards, it is possible

to schedule operands at any time after they are updated. On

the other hand, timing constraints limit the number of oper-

ations that can be performed within one clock cycle. Hence,

from a pure latency point of view, the broadest tree structure

that complies with the timing requirements would be optimal.

However, since not all input operands are available with the

first UDI, the tree must be modified such that late operands

can be chained into the tree at appropriate points.
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Fig. 6. 3x3 Gauss filter architecture with latency-critical

operands indicated.

Among all 8 result pixels returned with one transaction,

the latency-critical pixel is defined as the one for which the

largest number of input operands are updated by the same

UDI that returns the result data for this pixel. These input

operands are called latency-critical operands. Fig. 5(bottom)

shows latency-critical pixel and operands for different mask

sizes. Note that in each case R4 and not R8 is latency-critical,

because R8 is returned only with the subsequent UDI.

The latency-critical pixel governs the scheduling of the

data path. The overall latency for one transaction is mini-

mized, when processing of all latency-critical operands can

be scheduled for the last pipeline stage of the data path. Once

the optimum scheduling has been determined in this way, all

eight instances of a given operation can then use the same data

path architecture.

Fig. 6 exemplifies the data path architecture of the 3x3

Gauss filter. All multiplications were implemented by shift-

add/subtract, since with this approach better timing was

achieved than using the DSP macro slices built into the

FPGA. Because only two latency-critical operands exist in

the 3x3 case, it was possible to schedule them for the last

pipeline stage. For 5x5 and 5x7 mask sizes one additional

pipeline stage was required for Gauss filtering and gradient

calculation, since for these operations the four latency-critical

operands could not be processed within one clock cycle.

3.3. SW modifications

With the transfer scheme proposed only the first transaction

in each row is irregular and returns no useful results. Hence,

the original SW loop structure is maintained. The call for the

first transaction can be moved outside the loop without the

need for conditional statements. Fig. 7 exemplifies how the

TCC is invoked from the SW for a 3x3 Gauss filter.

Compared to the original SW implementation, using the

TCC requires only one fourth and one half of the number of

column and row iterations, respectively. For 3x3 and 5x7

// source & dest. pointer with offset
int* s = src_frame;
int* d = dst_frame+nCol-3; // dy=1,dx=3
iCol = nCol>>2; // 4 cols per transact.
for(r = 1; r < nRow-2 ; r+=2){

// fetch operands, 4 byte each
ra = s[ 0]; // n_1_A
rb = s[ iCol]; // n_1_B
rc = s[2*iCol]; // n_2_A
rd = s[3*iCol]; // n_2_B
// load operands, return dummy results
UDIx(r1, ra, rb); //(Res, Op_A, Op_B)
UDIx(r1, rc, rd);
UDIx(r2, rc, rd);
// incr. source & dest. pointer
s++; d++;
for(c = 1; c <= iCol ; c++,s++,d++){

// fetch operands, 4 byte each
ra = s[ 0]; // n_1_A
rb = s[ iCol]; // n_1_B
rc = s[2*iCol]; // n_2_A
rd = s[3*iCol]; // n_2_B
// load operands, return results
UDIx(r1, ra, rb); // dummy result
UDIx(r1, rc, rd);
UDIx(r2, rc, rd); // dummy operands
//store 2 x 4 result pixel
d[ 0] = r1;
d[iCol] = r2; }

// 2 rows per transaction
s+=iCol-1; d+=iCol-1; }

Fig. 7. SW code for 3x3 Gauss filter over one nRow × nCol
frame. Note the offset between source and destination pointer

(dy and dx) being realized at the beginning of the code ac-

cording to equations (1) and (2).

mask sizes one additional transaction is required at the end

of each row. These last transactions will return more data

than actually required. However, since the excessive bytes

are written to the frame edge area which is discarded anyway,

no special treatment in SW is necessary.

4. EXPERIMENTAL EVALUATION

4.1. Measurement Setup

Using the Xilinx EDK/ISE tool chain, the system described

above has been mapped to a Virtex-5 FPGA with the Pow-

erPC running at 400 MHz. In order to compare frame rate

performance a synthetic test sequence of 200 frames was pro-

cessed with and without coprocessor. Frame rate comparison

was then made with respect to three parameters. First, the

number of moving objects (zero or five) in the test frame se-
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mov. mask reso- frame rate [fps] incr.

obj. size lution CPU only CPU+TCC [%]

0

3

QCIF 51.8 68.6 32

CIF 12.7 16.9 33

PAL 3.2 4.2 32

5

QCIF 33.3 68.0 104

CIF 8.1 16.6 105

PAL 2.0 4.1 105

5

3

QCIF 35.2 41.7 18

CIF 10.7 13.4 25

PAL 3.0 3.8 29

5

QCIF 24.9 40.5 63

CIF 7.1 12.9 82

PAL 1.9 3.7 95

Table 1. Absolute frame rates and relative increase due to

TCC acceleration with respect to three parameters.

quence. Second, the mask size (3x3 or 5x5) used for the filter

operations Gauss, erode, dilate, and gradient. In case of gra-

dient calculation the larger mask size actually corresponds to

a 5x7 and 7x5 mask for x- and y-direction, respectively. Pixel

resolution (QCIF, CIF or PAL) was used as the third evalua-

tion parameter.

4.2. Quantitive Results

As shown in Table 1, the relative frame rate performance in-

crease due to acceleration by the TCC varies between 18 and

105% for the chosen parameter settings. As expected, the

smallest relative performance increase results for low resolu-

tion with small mask size. Vice versa, the biggest increase is

obtained for high resolution and large mask sizes.

Relative performance increase also depends on the num-

bers of moving objects and hence the number of features

detected and tracked. Because none of the feature-dependent

processing was accelerated, the relative speedup declines

with increasing number of moving objects. In scenes without

any moving objects all processing is directly proportional

to the frame size. Thus, in this case, relative frame rate in-

crease is independent of the pixel resolution. With increasing

resolution, the speedup with moving objects approaches that

achieved without objects, because feature-dependent process-

ing becomes negligible compared to the frame size.

Since a real-world application was used for performance

measurements it is also interesting to analyze absolute frame

rates. As can be seen in Table 1, the TCC brings about feasi-

ble rates (>12.5 fps) for CIF resolution. Also, absolute frame

rates become nearly independent on the mask size used, be-

cause all major operations that depend on the mask size have

been accelerated. Thus, higher quality results due to process-

ing with larger masks become possible without a significant

frame rate penalty.

The implementation of the TCC as shown in Fig. 4 re-

quires 13409 Virtex-5 LUTs and 11434 flip-flops, (8 × 12) ·
8 = 768 of which constitute the input data memory, cf. equa-

tion (4). Thus, the TCC occupies about 30% of the logic fab-

ric in the Virtex5-FX70T FPGA used.

5. CONCLUSION

It is possible to accelerate VCA applications to practical

frame rates on a general-purpose CPU embedded into Virtex-

5 FPGAs by means of a tightly-coupled coprocessor with

modest parallelism. This requires careful optimization of

the data transfer mechanism, with respect to both hardware

and software. A general design method for such optimized

data exchange has been developed. The method was justified

by performance measurements on real hardware, showing a

relative frame rate increase between 18 and 105%.

Future work shall include investigations of the 128-bit

APU load/store instructions for data transfer, as well as the

tradeoff between FPGA resource usage and frame rate per-

formance.

6. REFERENCES

[1] G.B. Newby, “Hardware acceleration prospects and chal-

lenges for high performance computing,” in IEEE/ACS
Int. Conf. on Comp. Syst. and Appl., 2009, pp. 841–844.

[2] I. Gelado et al., “CUBA: an architecture for efficient

cpu/co-processor data communication,” in ICS ’08: Proc.
of the 22nd Int. Conf. on Supercomputing, New York, NY,

USA, 2008, pp. 299–308, ACM.

[3] M. Grad and C. Plessl, “Woolcano - an architecture and

tool flow for dynamic instruction set extension on Xilinx

Virtex-4 FX,” in Proc. IEEE Symposium on Field Pro-
grammable Custom Computing Machines, 2009.

[4] J.A. Vijverberg and P.H.N. de With, “Hardware accel-

eration for tracking by computing low-order geometrical

moments,” in IEEE Workshop on Signal Processing Sys-
tems, 2008, pp. 43–48.

[5] J.A. Vijverberg and P.H.N. de With, “Architecture explo-

ration of an embedded multi-processor for video content

analysis,” in Proc. ProRISC, 2008.

[6] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, “A quanti-

tative analysis of the speedup factors of FPGAs over pro-

cessors,” in FPGA’04: Proc. of ACM/SIGDA 12th Int.
Symp. on FPGAs, New York, USA, 2004, pp. 162–170.

[7] C. Kaas, J. Luettin, R. Mattone, and K. Zahn, “Evalu-

ation of a self-learning event detector,” in Video Based
Surveillance Systems: Computer Vision and Distributed
Processing. 2001, pp. 205–214, Kluwer Acad. Publ.

92


